Skip to main content

Elemental Analysis by X-Ray and Electron Energy-Loss Spectroscopy

  • Chapter
Transmission Electron Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 36))

Abstract

The inner-shell ionization of atoms results in an emission of characteristic x-ray quanta or Auger electrons. A wavelength- or an energy-dispersive x-ray spectrometer can be coupled to a transmission electron microscope to record x-ray quanta emitted from the specimen. The quantitative methods developed for the x-ray microanalysis of bulk materials can be transferred to the investigation of thin specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.T. Stephenson: The continous x-ray spectrum, in Handbuch der Physik, Vol. 30, ed. by S. Flügge ( Springer, Berlin 1957 ) p. 337

    Google Scholar 

  2. N.A. Dyson: X-Rays in Atomic and Nuclear Physics ( Longman, London 1973 )

    Google Scholar 

  3. H.H. Kramers: On the theory of x-ray absorption and of the continuous x-ray spectrum. Philos. Mag. 46, 836 (1923)

    Google Scholar 

  4. R.H. Pratt, H.K. Tseng, C.M. Lee, L. Kissel: Bremsstrahlung energy spectra from electrons of kinetic energy 1 keV= T1 =2000 keV incident on neutral atoms 2≤ Z ≤92. Atomic Data and Nuclear Data Tables 20, 175 (1977)

    Article  ADS  Google Scholar 

  5. H.K. Tseng, C.M. Lee: Electron bremstrahlung angular distributions in the 1–500 keV energy range. Phys. Rev. A 19, 187 (1979)

    Article  ADS  Google Scholar 

  6. P. Bernsen, L. Reimer: Total rate imaging with x-rays in a SEM, in Scanning Electron Microscopy 1984/IV ( SEM Inc., AMF O’Hare, Chicago ) p. 1707

    Google Scholar 

  7. A. Sommerfeld: Uber die Beugung and Bremsung der Elektronen. Ann. Phys. 11, 257 (1931)

    Article  Google Scholar 

  8. P. Kirkpatrick, L. Wiedmann: Theoretical continuous x-ray energy and polarization. Phys. Rev. 67, 321 (1945)

    Article  ADS  Google Scholar 

  9. N.F. Mott, H.S.W. Massey: The Theory of Atomic Collisions, 3rd ed. ( Oxford Univ. Press, Oxford 1965 )

    Google Scholar 

  10. C.R. Worthington, S.G. Tomlin. The intensity of emission of characteristic x-radiation. Proc. Phys. Soc. A 69, 401 (1956)

    Article  ADS  Google Scholar 

  11. M. Gryzinski: Classical theory of atomic collisions. I. Theory of inelastic collisions. Phys. Rev. A 138, 336 (1965)

    MathSciNet  Google Scholar 

  12. C.J. Powell: Cross-sections for ionization of inner-shell electrons by electrons. Rev. Mod. Phys. 48, 33 (1976)

    Article  ADS  Google Scholar 

  13. C.J. Powell: Inelastic scattering of electrons, in Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare, Chicago 1982 ) p. 19

    Google Scholar 

  14. J.W. Motz, R.C. Placions: K-ionization cross sections for relativistic electrons. Phys. Rev. A 136, 662 (1964)

    ADS  Google Scholar 

  15. J.A. Bearden: X-ray wavelengths. Rev. Mod. Phys. 39, ‘78 (1967)

    Google Scholar 

  16. J.A. Bearden, A.F. Burr: Reevaluation of x-ray atomic energy levels. Rev. Mod. Phys. 39, 125 (1967)

    Article  ADS  Google Scholar 

  17. R.W. Fink, R.C. Jopson, H. Mark, C.D. Swift: Atomic fluorescence yields. Rev. Mod. Phys. 38, 513 (1966)

    Article  ADS  Google Scholar 

  18. W. Bambynek, B. Crasemann, R.W. Fink, H.U. Freund, H. Mark, C.D. Swift, R.E. Price, R.V. Rao: X-ray fluorescence yields, Auger and CosterKronig transition probabilities. Rev. Mod. Phys. 44, 716 (1972)

    Article  ADS  Google Scholar 

  19. H.U. Freund: Recent experimental values for K-shell fluorescence yields. X-Ray Spectrom. 4, 90 (1975)

    Article  Google Scholar 

  20. P. Kruit, J.A. Venables: High-spatial-resolution surface-sensitive electron spectroscopy using a magnetic parallelizer. Ultramicroscopy 25, 183 (1988)

    Article  Google Scholar 

  21. T.K. Kelly: Mass absorption coefficients and their relevance in electron probe microanalysis. Trans. Inst. Min. Metall. B 75, 59 (1966)

    Google Scholar 

  22. K.F.J. Heinrich: X-ray absorption uncertainty, in The Electron Microprobe, ed. by T.D. McKinley, K.F.J. Heinrich, D.B. Wittry ( Wiley, New York 1966 )

    Google Scholar 

  23. J.W. Mayer, E. Rimini: Ion Beam Handbook for Materials Analysis ( Academic, New York 1977 )

    Google Scholar 

  24. J.H. Hubble: Photon mass attenuation and energy absorption coefficients from 1 keV to 20 keV. Int’l J. Appl. Radiat. Isot. 33, 1269 (1982)

    Article  Google Scholar 

  25. C.J. Cooke, P. Duncumb: Performance analysis of a combined microscope and electron probe microanalyser `EMMA’, in 5th Int’l Congr. on X-Ray Optics and Microanalysis, ed. by G. Möllenstedt, K.H. Gaukler ( Springer, Berlin, Heidelberg 1969 ) p. 245

    Google Scholar 

  26. C.J. Cooke, I.K. Openshaw: Combined high resolution electron microscopy and x-ray microanalysis, in [Ref.1.55, Vol.1, p.175]

    Google Scholar 

  27. D.A. Gedcke: The Si(Li) x-ray energy analysis system: operating principles and performance. X-Ray Spectrometry 1, 129 (1972)

    Article  Google Scholar 

  28. D.A. Gedcke: The Si(Li) x-ray spectrometer for x-ray microanalysis, in [Ref.1.105, p.403]

    Google Scholar 

  29. C.E. Fiori, D.E. Newbury: Artifacts observed in energy-dispersive x-ray spectrometry in the SEM, in Scanning Electron Microscopy 1978/I ( SEM Inc., AMF O’Hare, Chicago ) p. 401

    Google Scholar 

  30. T.J. White, D.R. Cousens, G.J. Auchterlonie: Preliminary characterization of an intrinsic germanium detector on a 400-keV microscope. J. Microsc. 162, 379 (1991)

    Article  Google Scholar 

  31. P.J. Staham, J.V.P. Long, G. White, K. Kandiah: Quantitative analysis with an energy-dispersive detector using a pulsed electron probe and active signal processing. X-Ray Spectrometry 3, 153 (1974)

    Article  Google Scholar 

  32. C.E. Lyman, J.I. Goldstein, D.B. Williams, D.W. Ackland, S. von Harrach, A.W. Nicholls. P.J. Staham: High-performance x-ray detection in a new analytical electron microscope. J. Microsc. 176, 85 (1994)

    Article  Google Scholar 

  33. T.A. Hall: Reduction of background due to backscattered electrons in energy dispersive x-ray microanalysis. J. Microsc. 110, 103 (1977)

    Article  Google Scholar 

  34. B. Neumann, L. Reimer: A permanent magnet system for electron deflection in front of an energy dispersive x-ray spectrometer. Scanning 1, 130 (1978)

    Article  Google Scholar 

  35. N.C. Barbi, A.O. Sandborg, J.C. Russ, C.E. Soderquist: Light element analysis on the SEM using a windowless energy dispersive x-ray spectrometer, in Scanning Electron Microscopy 1974, ed. by O. Johari ( IIT Research Inst., Chicago 1974 ) p. 289

    Google Scholar 

  36. J.C. Russ: Procedures for quantitative ultralight element energy dispersive x-ray analysis, in Scanning Electron Microscopy 1977/I, ed. by O. Johari ( IIT Research Inst., Chicago 1977 ) p. 289

    Google Scholar 

  37. C.E. Lyman, D.B. Williams, J.I. Goldstein: X-ray detectors and spectrometers. Ultramicroscopy 28, 137 (1988)

    Article  Google Scholar 

  38. R. Schmidt, M. Feller-Kniepmeier: Investigation of system-induced background radiation using a 0–160 keV high-purity germanium detector. Ultra-microscopy 34, 229 (1990)

    Article  Google Scholar 

  39. F. Hofer, W. Grogger, P. Golob: Detector strategy in x-ray microanalysis, in Analytical TEM in Materials Science, Proc. Autumn School 1993, ed. by J. Heydenreich, W. Neumann (Max-Planck Inst. für Mikrostrukturphysik, Halle 1993 ), p. 50

    Google Scholar 

  40. M.J. Jacobs, J. Baborovska: Quantitative microanalysis of thin foils with a combined electron microscope—microanalyser (EMMA-3), in Electron Microscopy 1972 (IoP, London 1972 ) p. 136

    Google Scholar 

  41. G.W. Lorimer, F. Cliff, J.N. Clark: Determination of the thickness and spatial resolution for the quantitative analysis of thin foils, in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables ( Academic, London 1976 ) p. 153

    Google Scholar 

  42. R. König: Quantitative microanalysis of thin foils, in [Ref.1.29, p.526]

    Google Scholar 

  43. J.I. Goldstein, J.L. Costley, G.W. Lorimer, S.J.B. Reed: Quantitative x-ray analysis in the electron microscope, in Scanning Electron Microscopy 1977/I, ed. by O. Johari ( IIT Research Inst., Chicago 1977 ) p. 315

    Google Scholar 

  44. Z. Horita, T. Sano, M. Nemoto: A new form of the extrapolation method for absorption correction in quantitative x-ray microanalysis with the analytical electron microscope. Ultramicroscopy 35, 27 (1991)

    Article  Google Scholar 

  45. J. Philibert, R. Tixier: Electron probe microanalysis of TEM specimens, in [Ref.1.12, p.333]

    Google Scholar 

  46. G.W. Lorimer, S.A. Al-Salman, G. Cliff: The quantitative analysis of thin specimens: Effects of absorption, fluorescence and beam spreading, in Developments in Electron Microscopy and Analysis 1977, ed. by D.L. Misell ( IoP, London 1977 ) p. 369

    Google Scholar 

  47. I.M. Anderson, J. Bentley, C.B. Carter: The secondary fluorescence correction for x-ray microanalysis in the analytical electron microscope. J. Microsc. 178, 226 (1995)

    Article  Google Scholar 

  48. C.R. Hall: On the production of characteristic x-rays in thin metal crystals. Proc. Roy. Soc. (London) A 295, 140 (1966)

    Article  ADS  Google Scholar 

  49. D. Cherns, A. Howie, M.H. Jacobs: Characteristic x-ray production in thin crystals. Z. Naturforsch. A 28, 565 (1973)

    ADS  Google Scholar 

  50. B. Neumann, L. Reimer: Anisotropic x-ray generation in thin and bulk single crystals. J. Phys. D 13, 1737 (1980)

    Article  ADS  Google Scholar 

  51. A.J. Bourdillon, P.G. Self, W.M. Stobbs: Crystallographic orientation effects in energy dispersive x-ray analysis. Philos. Mag. A 44, 1335 (1981)

    Article  ADS  Google Scholar 

  52. I. Hashimoto, E. Wakai, H. Yamaguchi: Dependence of the x-ray detection orientation on Cliff—Lorimer factor for quantitative microanalysis in an electron microscope. Ultramicroscopy 32, 121 (1990)

    Article  Google Scholar 

  53. J.C.H. Spence, J. Tafto: ALCHEMI: a new technique for locating atoms in small crystals. J. Microsc. 130, 147 (1983)

    Article  Google Scholar 

  54. S.J. Pennycook: Delocalization corrections for electron channeling analysis. Ultramicroscopy 26, 239 (1988)

    Article  Google Scholar 

  55. C.J. Rossouw, P.S. Turner, T.J. White, A.J, O’Connor: Statistical analysis of electron channelling microanalytical data for the determination of site occupancies of impurities. Philos. Mag. Lett. 60, 225 (1989)

    Article  ADS  Google Scholar 

  56. W. Qian, B. Tötdal, R. Hoier, J.C.H. Spence: Channelling effects on oxygen-characteristic x-ray emission and their use as a reference site for ALCHEMI. Ultramicroscopy 41, 147 (1992)

    Article  Google Scholar 

  57. J. Taft0, Z. Liliental: Studies of the cation atom distribution in ZnCrxFe2_xO4 spinels using the channeling effect in electron induced x-ray emission. J. Appl. Cryst. 15, 260 (1992)

    Article  Google Scholar 

  58. L.J. Allen, T.W. Josefsson, C.J. Rossouw: Interaction delocalization in characteristic x-ray emission from light elements. Ultramicroscopy 55, 258 (1994)

    Article  Google Scholar 

  59. W. Nüchter, W. Sigle: Electron channelling: a method in real-space crystallography and a comparison with the ALCHEMI. Philos. Mag. A 71, 165 (1995)

    Article  ADS  Google Scholar 

  60. J. Taft0, O.L. Krivanek: Site-specific valence determination by EELS. Phys. Rev. Lett. 48, 560 (1982)

    Article  ADS  Google Scholar 

  61. J. Taft0, G. Lehmpfuhl: Direction dependence in EELS from single crystals. Ultramicroscopy 7, 287 (1982)

    Article  Google Scholar 

  62. J. Bentley, N.J. Zaluzec, E.A. Kenik, R.W. Carpenter: Optimization of an analytical electron microscope for x-ray microanalysis, in Scanning Electron Microscopy 1979/11, ed. by O. Johari (SEM, AMF O’Hare, IL 1979 ) p. 581

    Google Scholar 

  63. J. Philibert, R. Tixier: Electron penetration and the atomic number correction in electron probe microanalysis. J. Phys. D 1, 685 (1968)

    Article  ADS  Google Scholar 

  64. M.J. Nasir: Quantitative analysis on thin films in EMMA-4 using block standards, in Electron Microscopy 1972 (IoP, Lonson 1972 ) p. 142

    Google Scholar 

  65. G. Cliff, G.W. Lorimer: Quantitative analysis of thin metal foils using EMMA-4 — the ratio technique, in Electron Microscopy 1972 ( IoP, London 1972 ) p. 140

    Google Scholar 

  66. G. Cliff, G.W. Lorimer: The quantitative analysis of thin specimens. J. Microsc. 103, 203 (1975)

    Article  Google Scholar 

  67. M.N. Thompson, P. Doig, J.W. Edington, P.E.J. Flewitt: The influence of specimen thickness on x-ray count rates in STEM microanalysis. Philos. Mag. 35, 1537 (1977)

    Article  ADS  Google Scholar 

  68. J.K. Park, A.J. Ardell: Solute-enriched surface layers and x-ray microanalysis of thin foils of a commercial aluminium alloy. J. Microsc. 165, 301 (1992)

    Article  Google Scholar 

  69. P. Schwaab: Quantitative energy-dispersive x-ray microanalysis of thin metal specimens using the STEM. Scanning 9, 1 (1987)

    Article  Google Scholar 

  70. R. Gauvin, G. L’Espérance: Determination of the C 7 / parameter in the Bethe formula for the ionization cross-section by use of Cliff—Lorimer k a b factors obtained at different accelerating voltages. J. Microsc. 163, 295 (1991)

    Article  Google Scholar 

  71. T.P. Schreiber, A.M. Wims: A quantitative x-ray microanalysis thin film method using K-, L- and M-lines. Ultramicroscopy 6, 323 (1981)

    Google Scholar 

  72. J.E. Wood, D.C. Williams, J.I. Goldstein: Experimental and theoretical determination of ka,Fe factors for quantitative x-ray microanalysis in the analytical electron microscope. J. Microsc. 133, 255 (1984)

    Article  Google Scholar 

  73. D.B. Williams, J.R. Michael, J.I. Goldstein, A.D. Romig: Definition of the spatial resolution of x-ray microanalysis in thin foils. Ultramicroscopy 47, 121 (1992)

    Article  Google Scholar 

  74. C.E. Lyman, P.E. Manning, D.J. Duquette, E. Hall: STEM microanalysis of duplex stainless steel weld metal, in Scanning Electron Microscopy 1978/I, ed. by O. Johari (SEM, AMF O’Hare, IL 1978 ) p. 213

    Google Scholar 

  75. D.B. Williams, J.I. Goldstein: STEM/x-ray microanalysis across cx/y interfaces in FeNi meteorites, in [Ref.1.57, p.416]

    Google Scholar 

  76. N.J. Long: Digital x-ray mapping on an HB501 STEM, a new approach for the analysis of interfaces. Ultramicroscopy 34, 81 (1990)

    Article  Google Scholar 

  77. A.M. Ritter, W.G. Morris, M.F. Henry: Factors affecting the measurement of composition profiles in STEM, in Scanning Electron Microscopy 1979/I, ed. by O. Johari (SEM, AMF O’Hare, IL 1979 ) p. 121

    Google Scholar 

  78. T.A. Hall: The microprobe assay of chemical elements, in Physical Techniques in Biological Research, Vol. 1, Pt.A, ed. by G. Oster (Academic, New York 1971 ) p. 157

    Google Scholar 

  79. T.A. Hall, H.C. Anderson, T. Appleton: The use of thin specimens for x-ray microanalysis in biology. J. Microsc. 99, 177 (1973)

    Article  Google Scholar 

  80. T.A. Hall, B.L. Gupta: EDS quantitation and application to biology, in [Ref.1.66, p.169]

    Google Scholar 

  81. A. Warley: Standards for the application of x-ray microanalysis to biological specimens. J. Microsc. 157, 135 (1990)

    Article  Google Scholar 

  82. A. Patak, A. Wright, A.T. Marshall: Evaluation of several common standards for the x-ray microanalysis of thin biological sections. J. Microsc. 170, 265 (1993)

    Article  Google Scholar 

  83. H. Shuman, A.V. Somlyo, A.P. Somlyo: Quantitative electron probe microanalysis of biological thin sections: Methods and validity. Ultramicroscopy 1, 317 (1976)

    Article  Google Scholar 

  84. G.M. Roomans: Standards for x-ray microanalysis of biological specimens, in Scanning Electron Microscopy 1979/II, ( SEM Inc., AMF O’Hare, IL 1979 ) p. 649

    Google Scholar 

  85. F.F. Ingram, M.J. Ingram: Electron microprobe calibration for measurements of intracellular water, in Scanning Electron Microscopy 1979/II ( SEM Inc., AMF O’Hare, IL 1979 ) p. 649

    Google Scholar 

  86. G.M. Roomans, H.L.M. van Gaal: Organometallic and organometalloid compounds as standards for microprobe analysis of epoxy resin embedded tissue. J. Microsc. 109, 235 (1977)

    Article  Google Scholar 

  87. N. Roos, T. Barnard: Aminoplastic standards for quantitative x-ray microanalysis of thin sections of plastic embedded biological material. Ultramicroscopy 15, 277 (1984)

    Article  Google Scholar 

  88. A.J. Morgan, C. Winters: Practical notes on the production of thin amino-plastic standards for quantitative x-ray microanalysis. Micron Microsc. Acta 20, 209 (1989)

    Google Scholar 

  89. W.C. De Bruijn, M.I. Cleton-Soeteman: Application of Chelex standard beads in integrated morphometrical and x-ray microanalysis, in Scanning Electron Microscopy 1985/II ( SEM Inc., AMF O’Hare, IL 1985 ) p. 715

    Google Scholar 

  90. A. Dörge, R. Rick, K. Gehring, K. Thurau: Preparation of frozen-dried cryosections for quantitative x-ray microanalysis of electrolytes in biological soft tissue. Pflügers Arch. 373, 85 (1978)

    Article  Google Scholar 

  91. T. von Zglinicki, M. Bimmler, W. Krause: Estimation of organelle water fractions from frozen-dried cryosections. J. Microsc. 146, 67 (1987)

    Article  Google Scholar 

  92. K.E. Tvedt, G. Kopstad, J. Halgunset, O.A. Haugen: Rapid freezing of small biopsies and standards for cryosectioning and x-ray microanalysis. Am. J. Clin. Pathol. 92, 51 (1989)

    Google Scholar 

  93. D.C. Joy, D.M. Maher: The electron energy-loss spectrum: facts and artifacts, in Scanning Electron Microscopy 1980/I ( SEM Inc., Chicago 1980 ) p. 25

    Google Scholar 

  94. A.J. Craven, T.W. Buggy: Correcting electron energy loss spectra for artefacts introduced by serial collection. J. Microsc. 136, 227 (1984)

    Article  Google Scholar 

  95. O.L. Krivanek, C.C. Ahn, R.B. Keeney: Parallel detection electron spectrometer using quadrupole lenses. Ultramicroscopy 22, 103 (1987)

    Article  Google Scholar 

  96. A.J. Gubbens, O.L. Krivanek: Applications of post-column imaging filter in biology and materials science. Ultramicroscopy 51, 146 (1993)

    Article  Google Scholar 

  97. R.F. Egerton, Y.Y. Yang, S.C. Cheng: Characterization and use of the Gatan parallel-recording electron energy-loss spectrometer. Ultramicroscopy 48, 239 (1993)

    Article  Google Scholar 

  98. D.W. Johnson: A Fourier series method for numerical Kramers—Kronig analysis. J. Phys. A 8, 490 (1975)

    Article  ADS  MATH  Google Scholar 

  99. R.F. Egerton, S.C. Cheng: Thickness measurement by EELS, in Proc. 43rd Ann. Meeting EMSA, ( San Francisco Press, San Francisco, CA 1985 ) p. 389

    Google Scholar 

  100. D.R. Liu, D.B. Williams: Influence of some practical factors on background extrapolation in EELS quantification. J. Microsc. 156, 201 (1987)

    Article  Google Scholar 

  101. T. Pun, J.R. Ellis, M. Eden: Weighted least squares estimation of background in EELS imaging. J. Microsc. 137, 93 (1985)

    Article  Google Scholar 

  102. C. Colliex, C. Jeanguillaume, P. Trebbia: Quantitative local microanalysis with EELS, in [Ref.1.119, p.251]

    Google Scholar 

  103. M. Unser, J.R. Ellis, T. Oun, M. Eden: Optimal background estimation in EELS. J. Microsc. 145, 245 (1987)

    Google Scholar 

  104. C.W. Sorber, G.A.M. Ketelaars, E.S. Gelsema, J.F. Jongkind, W.C. De Bruijn: Quantitative analysis of electron energy-loss spectra from ultrathinsectioned biological material. J. Microsc. 162, 23 (1991)

    Article  Google Scholar 

  105. A.L.D. Beckers, E.S. Gelsema, W.C. De Bruijn: An efficient method for calculating the least-squares background fit in EELS. J. Microsc. 171, 87 (1993)

    Article  Google Scholar 

  106. J. Bentley, G.L. Lehmann, P.S. Sklad: Improved background fitting for EELS, in [Ref.1.58, Vol. 1, p.585]

    Google Scholar 

  107. H. Shuman, P. Kruit: Quantitative data-processing of parallel recorded EELS with low signal to background. Rev. Sci. Instr. 56, 231 (1985)

    Article  ADS  Google Scholar 

  108. M.K. Kundmann: Analysis of semiconductor EELS in the low-loss regime, in Microbeam Analysis 1986, ed. by A.D. Romig, W.F. Chambers ( San Francisco Press, San Francisco, CA 1986 ) p. 417

    Google Scholar 

  109. C.P. Scott, A.J. Craven, C.J. Gilmore, A.W. Bowen: Background fitting in the low-loss region of electron energy-loss spectra, in [Ref.1.60, Vol.2, p.56]

    Google Scholar 

  110. J.D. Steele, J.M. Titchmarsh, J.N. Chapman, J.H. Paterson: A single stage process for quantifying electron energy-loss spectra. Ultramicroscopy 17, 273 (1985)

    Article  Google Scholar 

  111. R.D. Leapman, C.R. Swyt: Separation of overlapping core edges in electron energy loss spectra by multiple least squares fitting. Ultramicroscopy 26, 393 (1988)

    Article  Google Scholar 

  112. D.W. Johnson, J.C.H. Spence: Determination of the single-scattering probability distribution from plural-scattering data. J. Phys. D 7, 771 (1974)

    Article  ADS  Google Scholar 

  113. C.R. Swyt, R.D. Leapman: Plural scattering in electron energy-loss microanalysis, in Scanning Electron Microscopy 19827, ( SEM Inc., Chicago 1982 ) p. 73

    Google Scholar 

  114. R.F. Egerton, P.A. Crozier: The use of Fourier techniques in EELS, in San- ning Electron Microscopy, Supp1. 2 ( SEM Inc., Chicago 1988 ) p. 245

    Google Scholar 

  115. C.R. Bradley, M.L. Wroge, P.C. Gibbons: How to remove multiple scattering from core-excitation spectra. Ultramicroscopy 16, 95 (1985); 19, 317 (1986); 21, 305 (1987)

    Google Scholar 

  116. D.S. Su, P. Schattschneider: Numerical aspects of the deconvolution of angle- integrated electron energy-loss spectra. J. Microsc. 167, 63 (1992)

    Article  Google Scholar 

  117. D.S. Su, P. Schattschneider: Deconvolution of angle-resolved electron energy-loss spectra. Philos. Mag. A 65, 1127 (1992)

    Article  ADS  Google Scholar 

  118. K. Wong, R.F. Egerton: Correction for the effects of elastic scattering in core-loss quantification. J. Microsc. 178, 198 (1995)

    Article  Google Scholar 

  119. M. Isaacson, D. Johnson: The microanalysis of light elements using transmitted energy loss electrons. Ultramicroscopy 1, 33 (1975)

    Article  Google Scholar 

  120. R.F. Egerton, M.J. Whelan: High resolution microanalysis of light elements by electron energy loss spectrometry, in [Ref.1.56, Vol.1, p.384]

    Google Scholar 

  121. J. Sévely, J.Ph. Pérez, B. Jouffrey: Energy loss of electrons through Al and carbon films from 300 keV up to 1200 keV, in [Ref.1.78, p.32]

    Google Scholar 

  122. R.F. Egerton: Formulae for light-element microanalysis by electron energy-loss spectrometry. Ultramicroscopy 3, 243 (1978)

    Article  Google Scholar 

  123. P.G. Self, P.R. Buseck: Low-energy limit to channelling effects in the inelastic scattering of fast electrons. Philos. Mag. A 48, L21 (1983)

    Article  ADS  Google Scholar 

  124. J. Tafto, O.L. Krivanek: Characteristic energy-losses from channeled 100 keV electrons. Nucl. Instr. Methods 194. 153 (1982)

    Article  Google Scholar 

  125. R.F. Egerton, C.J. Rossouw, M.J. Whelan: Progress towards a method for quantitative microanalysis of light elements by electron energy-loss spectrometry, in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables ( Academic, London 1976 ) p. 129

    Google Scholar 

  126. C.E. Fiori, R.D. Leapman, C.R. Swyt, S.B. Andrews: Quantitative x-ray mapping of biological cryosections. Ultramicroscopy 24, 237 (1988)

    Article  Google Scholar 

  127. D.E. Johnson, K. Izutsu, M. Cantino, J. Wong: High spatial resolution spectroscopy in the elemental microanalysis and imaging of biological systems. Ultramicroscopy 24, 221 (1988)

    Article  Google Scholar 

  128. A. LeFurgey, S.D. Davilla, D.A. Kopf, J.R. Sommer, P. Ingram: Real-time quantitative elemental analysis and mapping: microchemical imaging in cell physiology. J. Microsc. 165, 191 (1992)

    Article  Google Scholar 

  129. A. Berger, J. Mayer, H. Kohl: Detection limits in elemental distribution images produced by energy filtering TEM: case study of grain boundaries in Si3N4. Ultramicroscopy 55, 101 (1994)

    Article  Google Scholar 

  130. C. Colliex: An illustrated review of various factors governing the high spatial resolution capabilities in EELS microanalysis. Ultramicroscopy 18, 131 (1985)

    Article  Google Scholar 

  131. R.D. Leapman: STEM elemental mapping by electron energy-loss spectroscopy. Ann. New York Acad. Sci. 483, 326 (1986)

    Article  ADS  Google Scholar 

  132. H. Shuman, C.F. Chang, E.L. Bahe, A.P. Somlyo: Electron energy-loss spectroscopy: quantitation and imaging. Ann. New York Acad. Sci. 483, 295 (1986)

    Article  ADS  Google Scholar 

  133. R.H. Barckhaus, H.J. Höhling, I. Fromm, P. Hirsch, L. Reimer: Electron spectroscopic diffraction and imaging of the early and mature stages of calcium phosphate formation in the epiphyseal growth plate. J. Microsc. 162, 155 (1991)

    Article  Google Scholar 

  134. H. Lehmann, U. Kunz, A. Jacob: A simplified preparation procedure of plant material for elemental analysis by ESI and EELS techniques. J. Microsc. 162, 77 (1991)

    Article  Google Scholar 

  135. W. Probst, E. Zellmann, R. Bauer: Electron spectroscopic imaging of frozen-hydrated sections. Ultramicroscopy 28, 312 (1989)

    Article  Google Scholar 

  136. R.R. Schröder: Zero-loss energy-filtered imaging of frozen-hydrated proteins: model calculations and implications for future developments. J. Microsc. 166, 389 (1992)

    Article  Google Scholar 

  137. M. Creuzburg: Entstehung von Alkalimetallen bei der Elektronenbestrahlung von Alkalihalogeniden. Z. Phys. 194, 211 (1966)

    Article  ADS  Google Scholar 

  138. P.A. Crozier, J.N. Chapman, A.J. Craven, J.M. Titchmarsh: Some factors affecting the accuracy of EELS in determining elemental concentrations in thin films, in Analytical Electron Microscopy 1984, ed. by D.B. Williams, D.C. Joy ( San Francisco Press, San Francisco, CA 1984 ) p. 79

    Google Scholar 

  139. T.O. Ziebold: Precision and sensitivity in electron microprobe analysis. Anal. Chem. 39, 858 (1967)

    Article  Google Scholar 

  140. D.C. Joy, D.M. Maher: Sensitivity limits for thin specimen x-ray analysis, in Scanning Electron Microscopy 1977/I (IIT Research Inst., Chicago, IL 1977 ) p. 325

    Google Scholar 

  141. R.D. Leapman: EELS quantitative analysis, in [Ref.1.70, p.47]

    Google Scholar 

  142. D.C. Joy, D.M. Maher: Electron energy loss spectroscopy: Detectable limits for elemental analysis. Ultramicroscopy 5, 333 (1980)

    Article  Google Scholar 

  143. R.D. Leapman, S.B. Andrews: Biological electron energy loss spectroscopy: the present and the future. Microsc. Microanal. Microstr. 2, 387 (1991)

    Article  Google Scholar 

  144. C. Mory, C. Colliex: Elemental analysis near the single-atom detection level by processing sequences of energy-filtered images. Ultramicroscopy 28, 339 (1989)

    Article  Google Scholar 

  145. K.H. Körtje: Image-EELS: simultaneous recording of multiple electron energy-loss spectra from series of electron spectroscopic images. J. Microsc. 174, 149 (1994)

    Article  Google Scholar 

  146. K.M. Adamson-Sharpe, F.P. Ottensmeyer: Spatial resolution and detection sensitivity in microanalysis by electron energy loss selected imaging. J. Microsc. 122, 309 (1981)

    Article  Google Scholar 

  147. D.P. Bazett-Jones, F.P. Ottensmeyer: DNA organization in nucleosomes. Can. J. Biochem. 60, 364 (1982)

    Article  Google Scholar 

  148. F.P. Ottensmeyer, D.W. Andrews, A.L. Arsenault, Y.M. Heng, G.T. Simon, G.C. Weatherly: Elemental imaging by electron energy loss microscopy. Scanning 10, 227 (1988)

    Article  Google Scholar 

  149. A. Berger, H. Kohl: Optimum imaging parameters for elemental mapping in an energy filtering TEM. Optik 92, 175 (1993)

    Google Scholar 

  150. U. Plate, H.J. Höhling, L. Reimer, R.H. Barckhaus, R. Wienecke, H.P. Wies-mann, A. Boyde: Analysis of the calcium distribution in predentine by EELS and of the early crystal formation in dentine by ESI and ESD. J. Microsc. 166, 329 (1992)

    Article  Google Scholar 

  151. R.H. Ritchie: Quantal aspects of the spatial resolution of energy-loss measurements in electron microscopy. Philos. Mag. A 44, 931 (1981)

    Article  ADS  Google Scholar 

  152. H. Kohl: Image formation by inelastically scattered electrons: image of a surface plasmon. Ultramicroscopy 11, 53 (1983)

    Article  Google Scholar 

  153. H. Kohl, A. Berger: The resolution limit for elemental mapping in energy-filtering TEM. Ultramicroscopy 59, 191 (1995)

    Article  Google Scholar 

  154. D.A. Muller, J. Silcox: Delocalization in inelastic scattering. Ultramicroscopy 59, 195 (1995)

    Article  Google Scholar 

  155. W. Jäger, J. Mayer: Energy-filtered TEM of Sim Gen superlattices and Si-Ge heterostructures. I. Experimental results. Ultramicoscopy 59, 33 (1995)

    Article  Google Scholar 

  156. J.C.H. Spence, J. Lynch: STEM microanalysis by transmission EELS in crystals. Ultramicroscopy 9, 267 (1982)

    Article  Google Scholar 

  157. C. Colliex: An illustrated review of various factors governing the high spatial resolution capabilities in EELS microanalysis. Ultramicroscopy 18, 131 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1997). Elemental Analysis by X-Ray and Electron Energy-Loss Spectroscopy. In: Transmission Electron Microscopy. Springer Series in Optical Sciences, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-14824-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-14824-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-14826-6

  • Online ISBN: 978-3-662-14824-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics