Skip to main content

New Inverse Spectral Problem and Its Application

  • Conference paper
  • 337 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 488))

Abstract

The origin of inverse spectral problems lies in natural science, but the problems themselves are purely mathematical. At the beginning these problems attracted attention of mathematicians by their nonstandard physical contents. But we think that today their place in mathematical physics is determined rather by the unexpected connection between inverse problems and nonlinear evolution equations which was discovered in 1967. This discovery was made in a famous paper by Gardner, Greene, Kruskal and Miura (1967). They found that the scattering data of a family H(t) (−∞ < t < ∞) (i.e. the reflection coefficients r(k, t) and normalizing coefficients m(ik l , t)) of Schrödinger operators

EquationSource<math display=&#x2019;block&#x2019;> <mrow> <mi>H</mi><mrow><mo>(</mo> <mi>t</mi> <mo>)</mo></mrow><mo>=</mo><mo>&#x2212;</mo><mfrac> <mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> </mrow> <mrow> <mi>d</mi><msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo><mi>u</mi><mrow><mo>(</mo> <mrow> <mi>x</mi><mo></mo><mi>t</mi></mrow> <mo>)</mo></mrow></mrow> </math>]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$H\left( t \right) = - \frac{{{d^2}}}{{d{x^2}}} + u\left( {x,t} \right)$$

satisfy linear differential equations

EquationSource<math display=&#x2019;block&#x2019;> <mrow> <msub> <mover accent=&#x2019;true&#x2019;> <mi>r</mi> <mo>&#x02D9;</mo> </mover> <mi>t</mi> </msub> <mo>=</mo><mn>8</mn><mi>i</mi><msup> <mi>k</mi> <mn>3</mn> </msup> <mi>r</mi><mo></mo><mtext></mtext><msub> <mover accent=&#x2019;true&#x2019;> <mi>m</mi> <mo>&#x02D9;</mo> </mover> <mi>t</mi> </msub> <mo>=</mo><mn>8</mn><mi>i</mi><msup> <mrow> <mrow><mo>(</mo> <mrow> <mi>i</mi><msub> <mi>k</mi> <mi>l</mi> </msub> </mrow> <mo>)</mo></mrow></mrow> <mn>3</mn> </msup> <mi>m</mi></mrow> </math>]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${\dot r_t} = 8i{k^3}r,{\text{ }}{\dot m_t} = 8i{\left( {i{k_l}} \right)^3}m$$

if the potentials u(x, t) are rapidly decreasing solutions of the KdV equation

EquationSource<math display=&#x2019;block&#x2019;> <mrow> <msub> <mover accent=&#x2019;true&#x2019;> <mi>u</mi> <mo>&#x02D9;</mo> </mover> <mi>t</mi> </msub> <mo>=</mo><mn>6</mn><mi>u</mi><msub> <mi>u</mi> <mi>x</mi> </msub> <mo>=</mo><msub> <mi>u</mi> <mrow> <mi>x</mi><mi>x</mi><mi>x</mi></mrow> </msub> </mrow> </math>]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${\dot u_t} = 6u{u_x} = {u_{xxx}}$$
(1)

.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Gardner C.S., Greene J..M., Kruskal M.D., Miura R.M. (1967): Method for solving the Korteweg—de Vries equation, Phys. Rev. Lett. 19, 1095–1097

    Article  ADS  Google Scholar 

  • Marchenko V.A. (1987): Nonlinear Equations and Operators Algebras (D. Reidel, Dordrecht )

    Google Scholar 

  • Marchenko V.A. (1994): Characterization of the Weyl Solutions, Letters in Math. Physics 31, 179–193

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boutet de Monvel, A., Marchenko, V. (1997). New Inverse Spectral Problem and Its Application. In: Apagyi, B., Endrédi, G., Lévay, P. (eds) Inverse and Algebraic Quantum Scattering Theory. Lecture Notes in Physics, vol 488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-14145-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-14145-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-14147-2

  • Online ISBN: 978-3-662-14145-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics