Skip to main content

Analytical Electron Microscopy

  • Chapter
Transmission Electron Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 36))

Abstract

X-ray spectrometers can be coupled to a transmission electron microscope to record x-ray quanta emitted from the specimen. With an energy-dispersive spectrometer, quantitative analysis is possible for elements with atomic numbers above ten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.J. Cooke, P. Duncumb: “Performance Analysis of a Combined Electron Microscope and Electron Probe Microanalyser ‘EMMA’,” in Fifth Intern. Congr. on X-Ray Optics and Microanalysis, ed. by G. Möllenstedt, K.H. Gaukler (Springer, Berlin, Heidelberg, New York 1969) p.245.

    Google Scholar 

  2. C.J. Cooke, I.K. Openshaw: “Combined High Resolution Electron Microscopy and X-Ray Microanalysis,” in Microscopie Electronique 1970, Vol.1, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.175.

    Google Scholar 

  3. J.B. LePoole: “Miniature Lens,” in Electron Microscopy 1964, Vol.A, ed. by M. Titlbach (Czechoslovak Acad. Sci., Prague 1964) p.439.

    Google Scholar 

  4. P.F. Chapman: “A Microanalysis Attachment for the Elmiskop I,” in Fifth Intern. Congr. on X-Ray Optics and Microanalysis, ed. by G. Möllenstedt, K.H. Gaukler (Springer, Berlin, Heidelberg, New York 1969) p.241.

    Google Scholar 

  5. H. Neff: Über die Röntgen-Emissionsanalyse von elektronenmikroskopischen Präparaten. Z. Instrumentenkd. 72, 125 (1964).

    Google Scholar 

  6. E. Fuchs: X-ray spectrometer attachment for Elmiskop I electron microscope. Rev. Sci. Instrum. 37, 623 (1966).

    ADS  Google Scholar 

  7. D.A. Gedcke: “The Si(Li) X-Ray Spectrometer for X-Ray Microanalysis,” in Quantitative Scanning Electron Microscopy, ed. by D.B. Holt et al. (Academic, London 1974) p.403.

    Google Scholar 

  8. T.A. Hall: Reduction of background due to backscattered electrons in energy-dispersive x-ray microanalysis. J. Micr. 110, 103 (1977).

    Google Scholar 

  9. B. Neumann, L. Reimer: A permanent magnet system for electron deflection in front of an energy dispersive x-ray spectrometer. Scanning 1, 130 (1978).

    Google Scholar 

  10. N.C. Barbi, A.O. Sandborg, J.C. Russ, C.E. Soderquist: “Light Element Analysis on the SEM Using a Windowless Energy Dispersive X-Ray Spectrometer,” in Scanning Electron Microscopy 1974, ed. by O. Johari (IIT Research Inst., Chicago 1974) p.289.

    Google Scholar 

  11. J.C. Russ: “Procedures for Quantitative Ultralight Element Energy Dispersive X-Ray Analysis,” in Scanning Electron Microscopy 1977/I, ed. by O. Johari (IIT Research Inst., Chicago 1977) p.289.

    Google Scholar 

  12. S.J.B. Reed: Electron Microprobe Analysis (Cambridge University Press, London 1975).

    Google Scholar 

  13. J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C. Fiori, E. Lifshin: Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York 1981).

    Google Scholar 

  14. K.F.J. Heinrich: Electron Beam X-Ray Microanalysis (Van-Nostrand, New York 1981).

    Google Scholar 

  15. M.H. Jacobs, J. Baborovska: “Quantitative Microanalysis of Thin Foils with a Combined Electron Microscope-Microanalyser (EMMA-3),” in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.136.

    Google Scholar 

  16. G.W. Lorimer, G. Cliff, J.N. Clark: “Determination of the Thickness and Spatial Resolution for the Quantitative Analysis of Thin Foils,” in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.153.

    Google Scholar 

  17. R. König: “Quantitative X-Ray Microanalysis of Thin Foils,” in Electron Microscopy in Mineralogy, ed. by H.R. Wenk (Springer, Berlin, Heidelberg, New York 1976) p.526.

    Google Scholar 

  18. J.I. Goldstein, J.L. Costley, G.W. Lorimer, S.J.B. Reed: “Quantitative X-Ray Analysis in the Electron Microscope,” in Scanning Electron Microscopy 1977/I ed. by O. Johari (IIT Research Inst., Chicago 1977) p.315.

    Google Scholar 

  19. J. Philibert, R. Tixier: “Electron Probe Microanalysis of TEM Specimens,” in Physical Aspects of Electron Microscopy and Analysis, ed. by B.M. Siegel, D.R. Beaman (Wiley, New York 1975) p.333.

    Google Scholar 

  20. G.W. Lorimer, S.A. Al-Salman, G. Cliff: “The Quantitative Analysis of Thin Specimens: Effects of Absorption, Fluorescence and Beam Spreading,” in Development in Electron Microscopy and Analysis 1977, ed. by D.L. Misell (The Institute of Physics, London 1977) p.369.

    Google Scholar 

  21. C.R. Hall: On the production of characteristic x-rays in thin metal crystals. Proc. Roy. Soc. A295, 140 (1966).

    ADS  Google Scholar 

  22. D. Cherns, A. Howie, M.H. Jacobs: Characteristic x-ray production in thin crystals. Z. Naturforsch. A28, 565 (1973).

    ADS  Google Scholar 

  23. B. Neumann, L. Reimer: Anisotropic x-ray generation in thin and bulk single crystals. J. Phys. D13, 1737 (1980).

    ADS  Google Scholar 

  24. J. Bentley, N.J. Zaluzec, E.A. Kenik, R.W. Carpenter: “Optimization of an Analytical Electron Microscope for X-Ray Microanalysis,” in Scanning Electron Microscopy 1979/II, ed. by O. Johari (SEM Inc. AMF O’Hare 1979) p.581.

    Google Scholar 

  25. J. Philibert, R. Tixier: Electron penetration and the atomic number correction in electron probe microanalysis. J. Phys. D1, 685 (1968).

    ADS  Google Scholar 

  26. M.J. Nasir: “Quantitative Analysis on Thin Films in EMMA-4 Using Block Standards,” in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.142.

    Google Scholar 

  27. G. Cliff, G.W. Lorimer: “Quantitative Analysis of Thin Metal Foils Using EMMA-4 — the Ratio Technique,” in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.140.

    Google Scholar 

  28. G. Cliff, G.W. Lorimer: The quantitative analysis of thin specimens. J. Micr. 103, 203 (1975).

    Google Scholar 

  29. M.N. Thompson, P. Doig, J.W. Edington, P.E.J. Flewitt: The influence of specimen thickness on x-ray count rates in STEM microanalysis. Philos. Mag. 35, 1537 (1977).

    ADS  Google Scholar 

  30. T.P. Schreiber, A.M. Wims: A quantitative x-ray microanalysis thin film method using K-, L-and M-lines. Ultramicroscopy 6, 323 (1981).

    Google Scholar 

  31. C.E. Lyman, P.E. Manning, D.J. Duquette, E. Hall: “STEM Microanalysis of Duplex Stainless Steel Weld Metal,” in Scanning Electron Microscopy 1978/I ed. by O. Johari (SEM Inc., 0MF O’Hare 1978) p.213.

    Google Scholar 

  32. D.B. Williams, J.I. Goldstein: “STEM/X-Ray Microanalysis Across α/γ Interfaces in Fe-Ni meteorites,” in Electron Microscopy 1978, Vol.1, ed. by J.M. Sturgess (Microscopical Soc. Canada, Toronto 1978) p.416.

    Google Scholar 

  33. A.M. Ritter, W.G. Morris, M.F. Henry: “Factors Affecting the Measurement of Composition Profiles in STEM,” in Scanning Electron Microscopy 1979/I, ed. by O. Johari (SEM Inc., AMF O’Hare 1979) p.121.

    Google Scholar 

  34. T.A. Hall: “The Microprobe Assay of Chemical Elements,” in Physical Techniques in Biological Research, Vol.1, Part A, ed. by G. Oster (Academic, New York 1971) p.157.

    Google Scholar 

  35. T.A. Hall, H. Clarke Anderson, T. Appleton: The use of thin specimens for x-ray microanalysis in biology. J. Micr. 99, 177 (1973).

    Google Scholar 

  36. T.A. Hall, B.L. Gupta: “EDS Quantitation and Application to Biology,” in Introduction to Analytical Electron Microscopy, ed. by J.J. Hren, J.F. Goldstein, D.C. Joy (Plenum, New York 1979) p.169.

    Google Scholar 

  37. A.R. Spurr: Choice and preparation of standards for x-ray microanalysis of biological materials with special reference to macrocyclic polyether complexes. J. Microscopie Biol. Cell 22, 237 (1975).

    Google Scholar 

  38. G.M. Roomans, H.L.M. van Gaal: Organometallic and organometalloid compounds as standards for microprobe analysis of epoxy resin embedded tissue. J. Micr. 109, 235 (1977).

    Google Scholar 

  39. H. Shuman, A.V. Somlyo, A.P. Somlyo: Quantitative electron probe micro-analysis of biological thin sections: methods and validity. Ultramicroscopy 1, 317 (1976).

    Google Scholar 

  40. T.O. Ziebold: Precision and sensitivity in electron microprobe analysis. Anal. Chem. 39, 858 (1967).

    Google Scholar 

  41. D.C. Joy, D.M. Maher: “Sensitivity Limits for Thin Specimens X-Ray Analysis,” in Scanning Electron Microscopy 1977/I, ed. by O. Johari (IIT Research Inst., Chicago 1977) p.325.

    Google Scholar 

  42. A.J.F. Metherell: “Energy Analysing and Energy Selecting Microscopes,” in Advances in Optical and Electron Microscopy, Vol.4, ed. by R. Barer, V.E. Cosslett (Academic, London 1971) p.263.

    Google Scholar 

  43. W. Steckelmacher: Energy analysers for charged particle beams. J. Phys. E 6, 1061 (1973).

    ADS  Google Scholar 

  44. H.T. Pearce-Percy: “The Design of Spectrometers for Energy Loss Spectroscopy,” in Scanning Electron Microscopy 1978/I, ed. by O. Johari (SEM Inc., AMF O’Hare 1978) p.41.

    Google Scholar 

  45. D.B. Wittry: An electron spectrometer for use with the TEM. J. Phys. D 2, 1757 (1969).

    ADS  Google Scholar 

  46. H. Hintenberger: Improved magnetic focusing of charged particles. Rev. Sci. Instrum. 20, 748 (1949).

    ADS  Google Scholar 

  47. S. Penner: Calculations of properties of magnetic deflection systems. Rev. Sci. Instrum. 32, 150 (1961).

    ADS  Google Scholar 

  48. A.V. Crewe, M. Isaacson, D. Johnson: A high resolution electron spectrometer for use in transmission electron microscopy. Rev. Sci. Instrum. 42, 411 (1971).

    ADS  Google Scholar 

  49. R.F. Egerton: A simple electron spectrometer for energy analysis in the transmission microscope. Ultramicroscopy 3, 39 (1978).

    Google Scholar 

  50. R.F. Egerton: Design of an aberration-corrected electron spectrometer for the TEM. Optik 57, 229 (1980).

    Google Scholar 

  51. H. Shuman: Correction of the second-order aberrations of uniform field magnetic sectors. Ultramicroscopy 5, 45 (1980).

    Google Scholar 

  52. R.F. Egerton: The use of electron lenses between a TEM specimen and an electron spectrometer. Optik 56, 363 (1980).

    Google Scholar 

  53. D.E. Johnson: Pre-spectrometer optics in CTEM/STEM. Ultramicroscopy 5, 163 (1980).

    Google Scholar 

  54. A.W. Blackstock, R.D. Birkhoff, M. Slater: Electron accelerator and high resolution analyser. Rev. Sci. Instrum. 26, 274 (1955).

    ADS  Google Scholar 

  55. J. Lohff: Charakteristische Energieverluste bei der Streuung mittelschneller Elektronen an Aluminium-Oberflächen. Z. Phys. 171, 442 (1963).

    ADS  Google Scholar 

  56. Y. Kokubo, H. Koike, T. Someya: “Development of Energy Analyzer for Scanning and Transmission Microscope,” in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.374.

    Google Scholar 

  57. W. Kraus, P. Fazekas: Electron energy-loss spectrometry using an electron microscope in combination with an electrostatic cylindrical mirror. Siemens Forsch. Entwicklungsber. 6, 172 (1977).

    Google Scholar 

  58. A.V. Crewe, J. Wall, L.M. Welter: A high resolution scanning transmission electron microscope. J. Appl. Phys. 39, 5861 (1968).

    ADS  Google Scholar 

  59. H. Boersch: Experimentelle Bestimmung der Energieverteilung in thermisch ausgelösten Elektronenstrahlen. Z. Phys. 139, 115 (1954).

    ADS  Google Scholar 

  60. H. Boersch, H. Miessner: Ein hochempfindlicher Gegenfeid-Energieanalysator für Elektronen. Z. Phys. 168, 298 (1962).

    ADS  Google Scholar 

  61. H. Boersch, S. Schweda: Eine inverse Gegenfeldmethode zur Energieanalyse von Elektronen und Ionenstrahlen. Z. Phys. 167, 1 (1962).

    ADS  Google Scholar 

  62. H. Brack: Über eine Anordnung zur Filterung von Elektroneninterferenzen. Z. Naturforsch. A17, 1066 (1962).

    ADS  Google Scholar 

  63. H. Boersch, R. Wolter, H. Schoenebeck: Elastische Energieverluste kristall-gestreuter Elektronen: Z. Phys. 199, 124 (1967).

    ADS  Google Scholar 

  64. M.T. Browne, S. Lockovic, R.E. Burge: “Instrumentation and Recording for the Vacuum Generators HB5 STEM Instrument,” in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.27.

    Google Scholar 

  65. H. Boersch, J. Geiger, W. Stickel: Das Auflösungsvermögen des elektrostatisch-magnetischen Energieanalysators für schnelle Elektronen. Z. Phys. 180, 415 (1964).

    ADS  Google Scholar 

  66. J. Geiger, M. Nolting, B. Schröder: “How to Obtain High Resolution with a Wien Filter Spectrometer,” in Microscopie Electronique 1970, Vol.2, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.111.

    Google Scholar 

  67. W.H.J. Anderson, J.B. LePoole: A double wienfilter as a high resolution, high transmission electron energy analyser. J. Phys. E3, 121 (1970).

    ADS  Google Scholar 

  68. W.H.J. Andersen, J. Kramer: “A Double-Focusing Wien Filter as a Full-Image Energy Analyser for the Electron Microscope,” in Electron Microscopy 1972, (The Institute of Physics, London 1972) p.146.

    Google Scholar 

  69. G.H. Curtis, J. Silcox: A Wien filter for use as an energy analyzer with an electron microscope. Rev. Sci. Instrum. 42, 630 (1971).

    ADS  Google Scholar 

  70. G. Möllenstedt: Die elektrostatische Linse als hochauflösender Geschwindig-keitsanalysator. Optik 5, 499 (1949).

    Google Scholar 

  71. G. Möllenstedt, W. Dietrich: Verbesserung der Optik des hochauflösenden elektrostatischen Geschwindigkeitsanalysators. Optik 12, 246 (1955).

    Google Scholar 

  72. K. Keck, H. Deichsel: Die Verwendung der Elektronen-Einzellinse als “lichtstarkes” Energiefilter für Elektronenstrahlen. Optik 17, 401 (1960).

    Google Scholar 

  73. A.J.F. Metherell, R.F. Cook: Resolution and dispersion of the four classes of Möllenstedt electron energy analysers. Optik 34, 535 (1972).

    Google Scholar 

  74. S. Kuwabara, T. Uefuji, Y. Takamatsu: A simple electrostatic energy filter for electron diffraction and electron microscopy. Jpn. J. Appl. Phys. 13, 1495 (1974).

    ADS  Google Scholar 

  75. F. Lenz: Über das chromatische Auflösungsvermögen von Elektronenlinsen bei der Geschwindigkeitsanalyse. Optik 10, 439 (1953).

    Google Scholar 

  76. R. Shirota, T. Yanaka: “An Energy Analyser with Rotation Symmetrical Lenses,” in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.368.

    Google Scholar 

  77. L. Reimer, U. Riediger: Energieverlustspektroskopie mit einer modifizierten Kaustikmethode in einem 100 keV-Transmissionselektronenmikroskop. Optik 46, 67 (1976).

    Google Scholar 

  78. T. Ichinokawa: Electron energy analysis by a cylindrical magnetic lens. Jpn. J. Appl. Phys. 7, 799 (1968).

    ADS  Google Scholar 

  79. K.Z. Considine, K.C.A. Smith: “An Energy Analyser for High Voltage Microscopy,” in Electron Microscopy 1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p.329.

    Google Scholar 

  80. Y. Kamiya, K. Shimizu, T. Suzuki: The velocity analyser for high energy electrons. Optik 41, 421 (1974).

    Google Scholar 

  81. R. Castaing: Quelques application du filtrage magnetique des vitesses en microscopie electronique. Z. Angew. Phys. 27, 171 (1969).

    Google Scholar 

  82. R. Castaing, L. Henry: Filtrage magnétique des vitesses en microscopie électronique. C. R. Acad. Sci. Paris 255, 76 (1962).

    Google Scholar 

  83. H. Rose, E. Plies: Entwurf eines fehlerarmen magnetischen Energie-Analysators. Optik 40, 336 (1974).

    Google Scholar 

  84. H.T. Pearce-Percy, D. Krahl, J. Jaeger: “A 4-Magnet Imaging Spectrometer for a Fixed-Beam Transmission Microscope,” in Electron Microscopy 1976, Vol.1, ed. by D.G. Brandon (Tal International, Jerusalem 1976) p.348.

    Google Scholar 

  85. G. Zanchi, J.Ph. Perez, J. Sevely: Adaption of a magnetic filtering device in a one megavolt electron microscope. Optik 43, 495 (1945).

    Google Scholar 

  86. G. Zanchi, J. Sevely, B. Jouffrey: An energy filter for high voltage electron microscopy. J. Micr. Spectr. Electr. 2, 95 (1977).

    Google Scholar 

  87. B.L. Jones, D.G. Jenkins, G.R. Booker: “Use of Silicon Linear Photodiode Arrays for Detection of High-Energy Electrons,” in Developments in Electron Microscopy and Analysis 1977, ed. by D.L. Misell (The Institute of Physics, London 1977) p.73.

    Google Scholar 

  88. B.L. Jones, D.M. Walton, G.R. Booker: “Developments in the Use of One-and Two-Dimensional Self-Scanned Silicon Photodiode Arrays as Imaging Devices in Electron Microscopy,” in Developments in Electron Microscopy and Anlaysis 1981, ed. by M.J. Goringe (The Institute of Physics, London 1981) p.135.

    Google Scholar 

  89. H. Shuman: Parallel recording of electron energy loss spectra. Ultramicroscopy 6, 163 (1981).

    Google Scholar 

  90. P.E. Batson: Digital data acquisition of electron energy loss intensities. Ultramicroscopy 3, 367 (1979).

    Google Scholar 

  91. R.F. Egerton, D. Kenway: An acquisition, storage, display and processing system for electron energy-loss spectra. Ultramicroscopy 4, 221 (1979).

    Google Scholar 

  92. D.C. Misell, A.F. Jones: The determination of the single-scattering line profile from the observed spectrum. J. Phys. A2, 540 (1969).

    ADS  Google Scholar 

  93. D.W. Johnson, J.C.H. Spence: “Determination of the Single Scattering Electron Energy Loss Distribution from Plural Scattering Data,” in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.386.

    Google Scholar 

  94. J. Daniels, C. von Festenberg, H. Raether, K. Zeppenfeld: “Optical Constants of Solids by Electron Spectroscopy,” in Springer Tracts Mod. Phys., Vol.54 (Springer, Berlin, Heidelberg, New York 1970) p.77.

    Google Scholar 

  95. R.W. Ditchfield, A.G. Cullis: “Identification of Impurity Particles in Epitaxially Grown Si Films Using Combined Electron Microscopy and Energy Analysis,” in Microscopie Electronique 1970, Vol.2, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p. 125.

    Google Scholar 

  96. R.F. Cook: “Electron Energy Loss Spectroscopy of Glass,” in Microscopie Electronique, Vol.2, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.127.

    Google Scholar 

  97. M. Isaacson: Interaction of 25 keV electrons with the nucleic acid bases, adenine, thymine, and uracil. J. Chem. Phys. 56, 1803 and 1813 (1972).

    ADS  Google Scholar 

  98. J. Hainfeld, M. Isaacson: The use of electron energy loss spectroscopy for studying membrane architecture. Ultramicroscopy 3, 87 (1978).

    Google Scholar 

  99. D.R. Spalding, A.J.F. Metherell: Plasmons losses in Al-Mg alloys. Philos. Mag. 18, 41 (1968).

    ADS  Google Scholar 

  100. S.L. Cundy, A.J.F. Metherell, M.J. Whelan, P.N.T. Unwin, R.B. Nicholson: Studies of segregation and the initial stages of precipitation at grain boundaries in an Al-7wt% Mg alloy with an energy analysing electron microscope. Proc. Roy. Soc. A307, 267 (1968).

    ADS  Google Scholar 

  101. D.R. Spalding, R.E. Villagrana, G.A. Chadwick: A study of copper distribution in lamellar Al-CuAl2 eutectics using an energy analysing microscope. Philos. Mag. 20, 471 (1969).

    ADS  Google Scholar 

  102. R.F. Cook, S.L. Cundy: Plasmon energy losses in Al-Zn alloys. Philos. Mag. 20, 665 (1969).

    ADS  Google Scholar 

  103. G. Hibbert, J.W. Eddington: Experimental errors in combined electron microscopy and energy analysis. J. Phys. D5, 1780 (1972).

    ADS  Google Scholar 

  104. G. Hibbert, J.W. Edington: Superposition effects in the energy analysing electron microscope. Philos. Mag. 26, 1071 (1972).

    ADS  Google Scholar 

  105. R.F. Cook, A. Howie: Effect of elastic constraints on electron energy loss measurements in inhomogeneous alloy. Philos. Mag. 20, 641 (1969).

    ADS  Google Scholar 

  106. D.R. Spalding: Electron microscopy evidence of plasmon-dislocation interactions. Philos. Mag. 34, 1073 (1976).

    ADS  Google Scholar 

  107. R.F. Egerton: Measurement of inelastic/elastic scattering ratio for fast electrons and its use in the study of radiation damage. Phys. Status Solidi A37, 663 (1976).

    ADS  Google Scholar 

  108. D.B. Wittry, R.P. Ferrier, V.E. Cosslett: Selected-area electron spectro-metry in the transmission electron microscope. J. Phys. D2, 1767 (1969).

    ADS  Google Scholar 

  109. C. Colliex, B. Jouffrey: Diffusion inelastique des electrons dans un solide par excitation de niveaux atomiques profonds. Philos. Mag. 25, 491 (1972).

    ADS  Google Scholar 

  110. R.F. Egerton, M.J. Whelan: “High Resolution Microanalysis of Light Elements by Electron Energy Loss Spectrometry,” in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.384.

    Google Scholar 

  111. R.D. Leapman, V.E. Cosslett: Electron energy loss spectrometry: mean free paths for some characteristic x-ray excitations. Philos. Mag. 33, 1 (1976).

    ADS  Google Scholar 

  112. M. Isaacson, D. Johnson: The microanalysis of light elements using transmitted energy loss electrons. Ultramicroscopy 1, 33 (1975).

    Google Scholar 

  113. C. Colliex, V.E. Cosslett, R.D. Leapman, P. Trebbia: Contribution of electron energy loss spectroscopy to the development of analytical electron microscopy. Ultramicroscopy 1, 301 (1976).

    Google Scholar 

  114. J. Sevely. J.Ph. Perez, B. Jouffrey: “Energy Losses of Electrons Through Al and Carbon Films from 300 keV up to 1200 keV,” in High Voltage Electron Microscopy, ed. by P.R. Swann, C.J. Humphreys, M.J. Goringe (Academic, London 1974) p.32.

    Google Scholar 

  115. R.D. Leapman, V.E. Cosslett: Electron spectrometry of inner shell excitation. Vacuum 26, 423 (1977).

    Google Scholar 

  116. R.F. Egerton: Formulae for light-element microanalysis by electron energy-loss spectrometry. Ultramicroscopy 3, 243 (1978).

    Google Scholar 

  117. G. Lehmpfuhl, J. Taftø: “The Channelling Effect in Electron Energy Loss Spectroscopy,” in Electron Microscopy 1980, Vol.3, ed. by P. Brederoo, V.E. Cosslett (Seventh European Congr. Electron Microscopy Foundation, Leiden 1980) p.62.

    Google Scholar 

  118. R.F. Egerton, C.J. Rossouw, M.J. Whelan: “Progress Towards a Method for the Quantitative Microanalysis of Light Elements by Electron Energy-Loss Spectrometry,” in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.129.

    Google Scholar 

  119. D.C. Joy, D.M. Maher: Electron energy loss spectroscopy: detectable limits for elemental analysis. Ultramicroscopy 5, 333 (1980).

    Google Scholar 

  120. H. Boersch: Gegenfeldfilter für Elektronenbeugung und Elektronenmikroskopie. Z. Phys. 134, 156 (1953).

    ADS  Google Scholar 

  121. H. Watanabe: Energy selecting microscope. Jpn. J. Appl. Phys. 3, 480 (1964).

    ADS  Google Scholar 

  122. S.L. Cundy, A.J.F. Metherell, M.J. Whelan: An energy analysing electron microscope. J. Sci. Instrum. 43, 712 (1966).

    ADS  Google Scholar 

  123. S.L. Cundy, A. Howie, U. Valdrè: Preservation of electron microscopic image contrast after inelastic scattering. Philos. Mag. 20, 147 (1969).

    ADS  Google Scholar 

  124. Y. Kihn, G. Zanchi, J. Sevely, B. Jouffrey: Application du filtrage en energie des electrons a l’observation des objets epais en microscopie electronique. J. Micr. Spectr. Electr. 1, 363 (1976).

    Google Scholar 

  125. H.T. Pearce-Percy, J.M. Cowley: On the use of energy filtering to increase the contrast of STEM images of thick biological materials. Optik 44, 273 (1976).

    Google Scholar 

  126. M. Isaacson, J.P. Langmore, H. Rose: Determination of the non-localization of the inelastic scattering of electrons by electron microscopy. Optik 41, 92 (1974).

    Google Scholar 

  127. A.V. Crewe, J. Wall: Contrast in high resolution STEM. Optik 30, 461 (1970).

    Google Scholar 

  128. A.El Hili: Analyse quantitative à haute résolution par images electroniques filtrées. J. Microscopie 5, 669 (1966).

    Google Scholar 

  129. B. Jouffrey: “Electron Energy Loss Spectroscopy,” in Developments in Electron Microscopy and Analysis 1977, ed. by D.L. Misell (The Institute of Physics, London 1977) p.351.

    Google Scholar 

  130. C.J. Wilson, P.E. Batson, A.J. Craven, L.M. Brown: “Differentiated Energy Loss Spectroscopy in STEM,” in Developments in Electron Microscopy and Analysis 1977, ed. by D.L. Misell (The Institute of Physics, London 1977) p. 365.

    Google Scholar 

  131. K.M. Adamson-Sharpe, F.P. Ottensmeyer: Spatial resolution and detection sensitivity in microanalysis by electron energy loss selected imaging. J. Micr. 122, 302 (1981).

    Google Scholar 

  132. Y. Kamiya, R. Uyeda: Effect of incoherent waves on the electron microscopic image of crystals. J. Phys. Soc. Jpn. 16, 1361 (1961).

    ADS  Google Scholar 

  133. Y. Kamiya, Y. Nakai: Diffraction contrast effect of electrons scattered in-elastically through large angles. J. Phys. Soc. Jpn. 31, 195 (1971).

    ADS  Google Scholar 

  134. S.L. Cundy, A.J.F. Metherell, M.J. Whelan: Contrast preserved by elastic and quasi-elastic scattering of fast electrons near Bragg beams. Philos. Mag. 15, 623 (1967).

    ADS  Google Scholar 

  135. R. Castaing, P. Hénoc, L. Henry, M. Natta: Degré de cohérence de la diffusion électronique par interaction électron-phonon. C. R. Acad. Sci. Paris 265, 1293 (1967).

    Google Scholar 

  136. S. Kuwabara, T. Uefuji: Variation of electron microscopie thickness fringes of Al single crystals with energy loss. J. Phys. Soc. Jpn. 38, 1090 (1975).

    ADS  Google Scholar 

  137. J.B. LePoole: Ein neues Elektronenmikroskop mit stetig regelbarer Vergrößerung. Philips Tech. Rundsch. 9, 33 (1947).

    Google Scholar 

  138. M.E. Haine, R.S. Page, R.G. Garfitt: A three-stage electron microscope with stereographic dark field and electron diffraction capabilities. J. Appl. Phys. 21, 173 (1950).

    ADS  Google Scholar 

  139. W.D. Riecke, E. Ruska: Über ein Elektronenmikroskop mit Einrichtungen für Feinbereichsbeugung und Dunkelfeldabbildung durch Einzelreflex. Z. Wiss. Mikrosk. 63, 288 (1957).

    Google Scholar 

  140. A.W. Agar: Accuracy of selected-area microdiffraction in the electron microscope. Br. J. Appl. Phys. 11, 185 (1960).

    ADS  Google Scholar 

  141. W. Riecke: Über die Genauigkeit der Übereinstimmung von ausgewähltem und beugendem Bereich bei der Feinbereichs-Elektronenbeugung im LePoolschen Strahlengang. Optik 18, 278 (1961).

    Google Scholar 

  142. W. Riecke: Verzeichnung und Auflösung der im LePoolschen Strahlengang aufgenommenen Beugungsdiagramme. Optik 18, 373 (1961).

    Google Scholar 

  143. W.C.T. Dowell: Fehler von Beugungsdiagrammen, die mittels Elektronenlinsen erzeugt und abgebildet sind. Optik 20, 581 (1963).

    Google Scholar 

  144. J.C. Lodder, K.G. van der Berg: A method for accurately determining lattice parameters using electron diffraction in a commercial electron microscope. J. Micr. 100, 93 (1974).

    Google Scholar 

  145. F. Fujimoto, K. Komaki, S. Takagi, H. Koike: Diffraction patterns obtained by scanning electron microscopy. Z. Naturforsch. A27, 441 (1972).

    ADS  Google Scholar 

  146. A.P. Pogany, P.S. Turner: Reciprocity in electron diffraction and microscopy. Acta Cryst. A24, 103 (1968).

    Google Scholar 

  147. M.N. Thompson: “A Scanning Transmission Microscope: Some Techniques and Applications,” in Scanning Electron Microscopy: Systems and Applications, ed. by W.C. Nixon (The Institute of Physics, London 1973) p.176.

    Google Scholar 

  148. D.M. Maher: “Scanning Electron Diffraction in TEM and SEM Operating in the Transmission Mode,” in Scanning Electron Microscopy 1974, ed. by O. Johari (IIT Research Inst., Chicago 1974) p.215.

    Google Scholar 

  149. K.J. van Oostrum, A. Leenhouts, A. Jore: A new scanning micro-diffraction technique. Appl. Phys. Lett. 23, 283 (1973).

    ADS  Google Scholar 

  150. R.H. Geiss: Electron diffraction from areas less than 3 nm in diameter. Appl. Phys. Lett. 27, 174 (1975).

    ADS  Google Scholar 

  151. R.H. Geiss: “STEM Electron Diffraction from 30 Å Diameter Areas,” in Developments in Electron Microscopy and Analysis 1975, ed. by J.A. Venables (Academic, London 1976) p.61.

    Google Scholar 

  152. J.P. Chevalier, A.J. Craven: Microdiffraction, application to short range order in a quenched copper-platinum alloy. Philos. Mag. 36, 67 (1977).

    ADS  Google Scholar 

  153. W.D. Riecke: Beugungsexperimente mit sehr feinen Elektronenstrahlen. Z. Angew. Phys. 27, 155 (1969).

    Google Scholar 

  154. B. Bengtsson, B. Loberg, D.A. Porter, K.E. Easterling: “The Performance of a 200 kV STEM,” in Electron Microscopy 1976, Vol.1, ed. by D.G. Brandon (Tal International, Jerusalem 1976) p.450.

    Google Scholar 

  155. L.M. Brown, A.J. Craven, L.G.P. Jones, A. Griffith, W.M. Stobbs, C.J. Wilson: “Application of a High Resolution STEM to Material Science,” in Scanning Electron Microscopy 1976/I, ed. by O. Johari (IIT Research Inst., Chicago 1976) p.353.

    Google Scholar 

  156. H. von Harrach, C.E. Lyman, G.E. Verney, D.C. Joy, G.R. Booker: “Performance of the Oxford Field-Emission Scanning Transmission Electron Microscope,” in Developments in Electron Microscopy and Analysis 1975, ed. by J.A Venables (Academic, London 1976) p.7.

    Google Scholar 

  157. L. Reimer: Electron diffraction methods in TEM, STEM and SEM. Scanning 2, 3 (1979).

    Google Scholar 

  158. W. Kossel, G. Möllenstedt: Elektroneninterferenzen im konvergenten Bündel. Naturwissenschaften 26, 660 (1938).

    ADS  Google Scholar 

  159. W. Kossel, G. Möllenstedt: Dynamische Anomalie von Elektroneninterferenzen. Ann. Phys. 42, 287 (1942).

    Google Scholar 

  160. P. Goodman, G. Lehmpfuhl: Elektronenbeugungsuntersuchungen im konvergenten Bündel mit dem Siemens Elmiskop I. Z. Naturforsch. A20, 110 (1965).

    ADS  Google Scholar 

  161. H. Raith: Elektronenbeugung im konvergenten Bündel an gekühlten Präparaten mit dem Siemens-Elmiskop I. Z. Naturforsch. A20, 855 (1965).

    ADS  Google Scholar 

  162. D.J.H. Cockayne, P. Goodman, J.C. Mills, A.F. Moodie: Design and generation of an electron diffraction camera for the study of small crystalline regions. Rev. Sci. Instrum. 38, 1097 (1967).

    ADS  Google Scholar 

  163. J.M. Cowley, D.J. Smith, G.A. Sussex: “Application of a High Voltage STEM,” in Scanning Electron Microscopy 1970, ed. by O. Johari (IIT Research Inst., Chicago 1970) p.11.

    Google Scholar 

  164. P. Goodman: Observation of background contrast in convergent beam patterns. Acta Cryst. A28, 92 (1972).

    Google Scholar 

  165. C. van Essen: “SEM Channelling Patterns from 2 μm Selected Areas,” in Microscopie Electronique 1970, Vol.1, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.237.

    Google Scholar 

  166. L. Reimer, P. Hagemann: “The Use of Transmitted and Backscattered Electrons in the Scanning Mode of a TEM,” in Developments in Electron Microscopy and Analysis 1977, ed. by D.L. Misell (The Institute of Physics, London 1977) p. 135.

    Google Scholar 

  167. R.J. Woolf, D.C. Joy, J.M. Titchmarsh: “Scanning Transmission Electron Diffraction in the SEM,” in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.498.

    Google Scholar 

  168. A.J. Craven: “Specimen Orientation in STEM,” in Developments in Electron Microscopy and Analysis 1977, ed. by D.L. Misell (The Institute of Physics, London 1977) p.311.

    Google Scholar 

  169. G. Möllenstedt, H.R. Meyer: Strahlengang zur Strukturanalyse von Einkristallen durch Elektronen-Transmissions-Doppelwinkelabrasterung. Optik 42, 487 (1975).

    Google Scholar 

  170. J.A. Fades: “Another Way to Form Zone-Axis Patterns,” in Electron Microscopy and Analysis 1979, ed. by T. Mulvey (The Institute of Physics, London 1979) p.9.

    Google Scholar 

  171. H. Mahl, W. Weitsch: Kleinwinkelbeugung mit Elektronenstrahlen. Naturwissenschaften 47, 301 (1960); Z. Naturforsch. A15, 1051 (1960).

    ADS  Google Scholar 

  172. R.P. Ferrier: “Small Angle Electron Diffraction in the Electron Microscope,” in Advances in Optical and Electron Microscopy, Vol.3, ed. by R. Barer, V.E. Cosslett (Academic, London 1969) p.155.

    Google Scholar 

  173. R.H. Wade, J. Silcox: Small angle electron scattering from vacuum condensed metallic films. Phys. Status Solidi 19, 57 and 63 (1967).

    Google Scholar 

  174. J. Smart, R.E. Burge: Small-angle electron diffraction patterns of assemblies of spheres and viruses. Nature 205, 1296 (1965).

    ADS  Google Scholar 

  175. V. Drahoš, A. Delong: “Low-Angle Electron Diffraction from Defined Specimen Area,” in Microscopie Electronique 1970, Vol.2, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.147.

    Google Scholar 

  176. R.T. Murray, R.P. Ferrier: Biological applications of electron diffraction. J. Ultrastruct. Res. 21, 361 (1967).

    Google Scholar 

  177. G.A. Bassett, A. Keller: Low-angle scattering in an electron microscope applied to polymers. Philos. Mag. 9, 817 (1964).

    ADS  Google Scholar 

  178. P.H. Denbigh, C.W.B. Grigson: Scanning electron diffraction with energy analysis. J. Sci. Instrum. 42, 305 (1965).

    ADS  Google Scholar 

  179. L. Reimer, K. Freking: Versuch einer quantitativen Erfassung der Textur von Au-Aufdampfschichten. Z. Phys. 184, 119 (1965).

    ADS  Google Scholar 

  180. M.F. Tompsett: Review: Scanning high-energy electron diffraction in materials science. J. Mat. Sci. 7, 1069 (1972).

    ADS  Google Scholar 

  181. C.W. Grigson: Improved scanning electron diffraction system. Rev. Sci. Instrum. 36, 1587 (1965).

    ADS  Google Scholar 

  182. F.C.S.M. Totthill, W.C. Nixon, C.W.B. Grigson: “Ultra-High Vacuum Modification of an AEI EM6 Electron Microscope for Studies of Nucleation in Evaporated Films,” in Electron Microscopy 1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p.229.

    Google Scholar 

  183. A.M. MacLeod, J.N. Chapman: A digital scanning and recording system for spot electron diffraction patterns. J. Phys. E 10, 37 (1977).

    ADS  Google Scholar 

  184. R.C. Newman, D.W. Pashley: The sensitivity of electron diffraction as a means of detecting thin surface films. Philos. Mag. 46, 927 (1955).

    Google Scholar 

  185. F. Heise: Ein Zusatzgerät für Elektronenbeugung mit streifendem Einfall. Optik 9, 139 (1952).

    Google Scholar 

  186. W. Riecke, F. Stöcklein: Eine Objektkammer mit universell beweglichem Präparattisch für Elektronenbeugungsuntersuchungen. Z. Phys. 156, 163 (1959).

    ADS  Google Scholar 

  187. M. Eisfeldt, K.H. Herrmann, F. Thon: “Ein Elektronenbeugungsgerät als Zusatzeinrichtung zum Elmiskop I,” in Proc. European Regional Conf. on Electron Microscopy, Vol.1, ed. by A.L. Houwink, B.J. Spit (Nederlandse Vereniging voor Electronenmicroscopie, Delft 1960) p.139.

    Google Scholar 

  188. J.A. Venables, C.J. Harland: Electron back-scattering patterns — a new technique for obtaining crystal information in the SEM. Philos. Mag. 27, 1193 (1973).

    ADS  Google Scholar 

  189. M.N. Alam, M. Blackman, D.W. Pashley: High-angle Kikuchi patterns. Proc. Roy Soc. A221, 224 (1954).

    ADS  Google Scholar 

  190. L. Reimer, W. Pöpper, B. Volbert: “Contrast Reversals in the Kikuchi Bands of Backscattered and Transmitted Electron Diffraction Patterns,” in Developments in Electron Microscopy and Analysis 1977, ed. by D.L. Misell (The Institute of Physics, London 1977) p.259.

    Google Scholar 

  191. D.G. Coates: Kikuchi-like reflection patterns obtained with the SEM. Philos. Mag. 16, 1179 (1967).

    ADS  Google Scholar 

  192. G.R. Booker: “Scanning Electron Microscopy: Electron Channelling Effects,” in Modern Diffraction and Imaging Techniques in Material Science, ed. by S. Amelinckx (North-Holland, Amsterdam 1970) p.613.

    Google Scholar 

  193. L. Reimer: “Electron Specimen Interactions in SEM,” in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.83.

    Google Scholar 

  194. J.W. Steeds, G.J. Tatlock, J. Hampson: Real space crystallography. Nature 241, 435 (1973).

    ADS  Google Scholar 

  195. G.J. Tatlocks, J.W. Steeds: Real space crystallography in molybdenite. Nature Phys. Sci. 246, 126 (1973).

    ADS  Google Scholar 

  196. J.W. Steeds, P.M. Jones, G.M. Rackham, M.D. Shannon: “Crystallographic Information from Zone Axis Patterns,” in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.351.

    Google Scholar 

  197. J.W. Steeds, P.M. Jones, J.E. Loveluck, K.E. Cooke: The dependence of zone axis patterns on string integrals or the number of bound states in high energy electron diffraction. Philos. Mag. 36, 309 (1977).

    ADS  Google Scholar 

  198. M.D. Shannon, J.W. Steeds: On the relationship between projected crystal potential and the form of certain zone axis patterns in high energy electron diffraction. Philos. Mag. 36, 279 (1977).

    ADS  Google Scholar 

  199. W. Witt: Zur absoluten Präzisionsbestimmung von Gitterkonstanten mit Elektroneninterferenzen am Beispiel von Thallium-(I)-Chlorid. Z. Naturforsch. A19, 1363 (1964).

    ADS  Google Scholar 

  200. J.M. Corbett, F.W. Boswell: Use of thin single crystals as reference standards for precision electron diffraction. J. Appl. Phys. 37, 2016 (1966).

    ADS  Google Scholar 

  201. A.L. MacKay. Calibration of diffraction patterns taken in the electron microscope. J. Phys. E3, 248 (1970).

    MathSciNet  ADS  Google Scholar 

  202. J.T. Jubb, E.E. Laufer: The beam-tilt device of an electron microscope as an internal diffraction standard. J. Phys. E9, 871 (1976).

    ADS  Google Scholar 

  203. E.E. Laufer, J.T. Jubb, K.S. Milliken: The use of the beam tilt circuitry of an electron microscope for rapid determination of lattice constants. J. Phys. E8, 671 (1975).

    ADS  Google Scholar 

  204. H. König: Gitterkonstantenbestimmung im Elektronenmikroskop. Naturwissenschaften 33, 343 (1946).

    ADS  Google Scholar 

  205. F.W.C. Bosswell: A standard substance for precise electron diffraction measurements. Phys. Rev. 80, 91 (1950).

    ADS  Google Scholar 

  206. C. Lu, E.W. Malmberg: ZnO smoke as a reference standard in electron wavelength calibration. Rev. Sci. Instrum. 14, 271 (1943).

    ADS  Google Scholar 

  207. R. Rühle: Über Gesetzmäßigkeiten in Texturaufnahmen von Elektronenbeugungsbildern. Optik 7, 279 (1950).

    Google Scholar 

  208. Z.G. Pinsker: Electron Diffraction, translated by J.A. Spink, E. Feigl (Butterworths, London 1953).

    Google Scholar 

  209. B.K. Vainshtein: Structure Analysis by Electron Diffraction, translated by E. Feigl, J.A. Spink (Pergamon, Oxford 1964).

    Google Scholar 

  210. J.A. Gard: Interpretation of electron micrographs and diffraction patterns: the electron optical investigation of clays. Mineralogical Soc. London (1971).

    Google Scholar 

  211. J.M. Cowley: Crystal structure determination by electron diffraction. Prog. Mater. Sci. 13, 267 (1966).

    Google Scholar 

  212. S. Nagakura: A method for correcting the primary extinction effect in electron diffraction. Acta Cryst. 10, 601 (1957).

    Google Scholar 

  213. B.K. Vainshtein, A.N. Lobacher: Dynamic scattering and its use in structural electron diffraction studies. Sov. Phys. Cryst. 6, 609 (1961).

    Google Scholar 

  214. J.M. Cowley: Structure analysis of single crystals by electron diffraction. Acta Cryst. 6, 516, 522, and 846 (1953).

    Google Scholar 

  215. J.M. Cowley: “The Theoretical Basis for Electron Diffraction Structure Analysis,” in Electron Microscopy 1962, Vol.1, ed. by S.S. Breese (Academic, New York 1962) p. JJ-1.

    Google Scholar 

  216. S. Fujime, D. Watanabe, S. Ogawa: On forbidden reflection spots and unexpected streaks appearing in electron diffraction patterns from hexagonal Co. J. Phys. Soc. Jpn. 19, 711 (1964).

    ADS  Google Scholar 

  217. J.F. Brown, D. Clark: The use of the three-stage electron microscope in crystal-structure analysis. Acta Cryst. 5, 615 (1952).

    Google Scholar 

  218. J.A. Gard: The use of the stereoscopic tilt device of the electron microscope in unit-cell determinations. Br. J. Appl. Phys. 7, 361 (1956).

    ADS  Google Scholar 

  219. J.A. Gard: “Interpretation of Electron Diffraction Patterns,” in Electron Microscopy in Mineralogy, ed. by H.W. Wenk (Springer, Berlin, Heidelberg, New York 1976) p.52.

    Google Scholar 

  220. R.R. Dayal, J.A. Gard, F.P. Glasser: Crystal data on FeAl03. Acta Cryst. 18, 574 (1965).

    Google Scholar 

  221. J.A. Gard, ü.M. Bennet: “A Goniometric Specimen Stage, and Its Use in Crystallography,” in Electron Microscopy 1966, Vol.1, ed. by R. Uyeda (Maruzen, Tokyo 1966) p.593.

    Google Scholar 

  222. G. Cliff, J.A. Gard, G.W. Lorimer, H.F.W. Taylor: Tacharanite. Mineral. Mag. 40, 113 (1975).

    Google Scholar 

  223. S. Kuwabara: Accurate determination of hydrogen positions in NH4Cl by electron diffraction. J. Phys. Soc. Jpn. 14, 1205 (1959).

    ADS  Google Scholar 

  224. V.V. Udalova, Z.G. Pinsker: Electron diffraction study of the structure of ammonium sulfate. Sov. Phys. Cryst. 8, 433 (1963).

    Google Scholar 

  225. J.A. Gard, H.F.W. Taylor, L.W. Staples: “Studies in Crystal Structure Using Electron Diffraction of Single Crystals,” in Vierter Internationaler Kon-greß für Elektronenmikroskopie Berlin 1958, Vol.1, ed. by W. Bargmann et al. (Springer, Berlin, Göttingen, Heidelberg 1960) p.449.

    Google Scholar 

  226. H.M. Otte, J. Dash, H.F. Schaake: Electron microscopy and diffraction of thin films. Interpretation and correlation of images and diffraction patterns. Phys. Status Solidi 5, 527 (1964).

    Google Scholar 

  227. C. Laird, E. Eichen, W.R. Bitler: Accuracy in the use of electron diffraction spot patterns for determining crystal orientations. J. Appl. Phys. 37, 2225 (1966).

    ADS  Google Scholar 

  228. K. Lücke, H. Perlwitz, W. Pitsch: Elektronenmikroskopische Bestimmung der Orientierungsverteilung der Kristal lite in gewalztem Kupfer. Phys. Status Solidi 7, 733 (1964).

    Google Scholar 

  229. F. Haessner, U. Jakubowksi, M. Wilkens: Anwendung elektronenmikroskopischer Feinbereichsbeugung zur Ermittlung der Walztextur von Kupfer. Phys. Status Solidi 7, 701 (1964).

    Google Scholar 

  230. P.L. Ryder, W. Pitsch: The uniqueness of orientation determination by selected area electron diffraction. Philos. Mag. 15, 437 (1967).

    ADS  Google Scholar 

  231. P.L. Ryder, W. Pitsch: On the accuracy of orientation determination by selected area diffraction. Philos. Mag. 18, 807 (1968).

    ADS  Google Scholar 

  232. D.J. Mazey, R.S. Barnes, A. Howie: On interstitial dislocation loops in aluminium bombarded with alpha-particles. Philos. Mag. 7, 1861 (1962).

    ADS  Google Scholar 

  233. M.H. Loretto, L.M. Clarebrough, P. Humble: Nature of dislocation loops in quenched Al. Philos. Mag. 13, 953 (1966).

    ADS  Google Scholar 

  234. M. von Heimendahl: Determination of metal foil thickness and orientation in electron microscopy. J. Appl. Phys. 35, 457 (1964).

    ADS  Google Scholar 

  235. S.S. Sheinin, C.D. Cann: The determination of orientation from Kikuchi patterns. Phys. Status Solidi 11, K1 (1965).

    ADS  Google Scholar 

  236. R. Bonnet, F. Durand: Precise determination of the relative orientation of two crystals from the analysis of two Kikuchi patterns. Phys. Status Solidi A27, 543 (1975).

    ADS  Google Scholar 

  237. W. Griem, P. Schwaab, U. Stockhofe: Behandlung von Epitaxie-Fragen bei der Elektronenbeugung mit Hilfe der Datenverarbeitung. Arch. Eisenhüttenwesen 43, 509 (1972).

    Google Scholar 

  238. W. Griem, P. Schwaab: Behandlung von gesetzmäßigen Verwachsungen nichtkubischer und teilkohärenter Phasen bei der Elektronenbeugung. Arch. Eisenhüttenwesen 44, 677 (1973).

    Google Scholar 

  239. R. Bonnet, E.E. Laufer: Precise determination of the relative orientation of two crystals from the analysis of spot diffraction patterns. Phys. Status Solidi A40, 599 (1977).

    ADS  Google Scholar 

  240. M.D. Drazin, M.H. Otte: The systematic determination of crystallographic orientations from three octahedral traces on a plane surface. Phys. Status Solidi 3, 824 (1963).

    Google Scholar 

  241. A.G. Crocker, M. Bevis: The determination of the orientation and thickness of thin foils from transmission electron micrographs. Phys. Status Solidi 6, 151 (1964).

    Google Scholar 

  242. G. Thomas: Transmission Electron Microscopy of Metals (Wiley, New York 1962).

    Google Scholar 

  243. A. Baltz: Rotation of image and selected area diffraction patterns in the RCA-EMU3 electron microscope. Rev. Sci. Instrum. 33, 246 (1962).

    ADS  Google Scholar 

  244. P. Delavignette: Determination of some instrumental constants of the electron microscope Philips EM 200. J. Sci. Instrum. 40, 461 (1963).

    ADS  Google Scholar 

  245. H. Raether: Reflexion von schnellen Elektronen an Einkristallen. Z. Phys. 78, 527 (1932).

    ADS  Google Scholar 

  246. R.D. Heidenreich: Theory of the ‘forbidden’ (222) electron reflection in the diamond structure. Phys. Rev. 77, 271 (1950).

    ADS  MATH  Google Scholar 

  247. M. Takagi, S. Morimoto: The forbidden 222 electron reflection from Ge. J. Phys. Soc. Jpn. 18, 819 (1963).

    ADS  Google Scholar 

  248. H. Göttsche: Zur Struktur dünner Ag-Schichten. Z. Phys. 134, 517 (1953).

    ADS  Google Scholar 

  249. W. Pitsch: Kristallographische Eigenschaften von Eisennitrid-Ausscheidungen im Ferrit. Arch. Eisenhüttenwesen 32, 493 and 573 (1961).

    Google Scholar 

  250. S. Ogawa, D. Watanabe, H. Watanabe, T. Komoda: “The Direct Observation of the Long Period of the Ordered Alloy CuAu (II) by Means of Electron Microscope,” in Vierter Internationaler Kongreß für Elektronenmikroskopie Berlin 1958, Vol.1, ed. by W. Bargmann et al. (Springer, Berlin, Göttingen, Heidelberg 1960) p.334.

    Google Scholar 

  251. D.W. Pashley, A.E.B. Presland: The observation of antiphase boundaries during the transition from CuAu I to CuAu II. J. Inst. Met. 87, 419 (1959).

    Google Scholar 

  252. S. Ogawa: On the antiphase domain structures in ordered alloys. J. Phys. Soc. Jpn. 17, Suppl.B-II, 253 (1962).

    Google Scholar 

  253. I. Ackermann: Beobachtungen an dynamischen Interferenzerscheinungen im konvergenten Elektronenbündel. Ann. Phys. 2, 19 and 41 (1948).

    Google Scholar 

  254. P.M. Kelly, A. Jostsons, R.G. Blake, J.G. Napier: The determination of foil thickness by STEM. Phys. Status Solidi A31, 771 (1975).

    ADS  Google Scholar 

  255. R.G. Blake, A. Jostsons, P.M. Kelly, J.G. Napier: The determination of extinction distances and anomalous absorption coefficients by STEM. Philos. Mag. A37, 1 (1978).

    ADS  Google Scholar 

  256. J.W. Steeds, K.K. Fung: “Application of Convergent Beam Electron Microscopy in Materials Science,” in Electron Microscopy 1978, Vol.1, ed. by J.M. Sturgess (Microscopical Soc. Canada, Toronto 1978) p.620.

    Google Scholar 

  257. J.W. Steeds: “Convergent Beam Electron Diffraction,” in Analytical Electron Microscopy, ed. by J.J. Hren, J.I. Goldstein, D.C. Joy (Plenum, New York 1979) p.387.

    Google Scholar 

  258. P.M. Jones, G.M. Rackham, J.W. Steeds: Higher order Laue zone effects in electron diffraction and their use in lattice parameter determination. Proc. Roy. Soc. A354, 197 (1977).

    ADS  Google Scholar 

  259. B.F. Buxton: Bloch waves and higher order Laue zone effects in high energy electron diffraction. Proc. Roy. Soc. A350, 335 (1976).

    ADS  Google Scholar 

  260. J.W. Steeds: “Information About the Crystal Potential from Zone Axis Patterns,” in Electron Microscopy 1980, Vol.4, ed. by P. Brederoo, J. Van Landuyt (Seventh European Congr. Electron Microscopy Foundation, Leiden 1980) p.96.

    Google Scholar 

  261. J.R. Baker, S. McKernan: “Structure Factor Information from HOLZ Beam Intensities in Convergent-Beam HEED,” in Electron Microscopy and Analysis 1981, ed. by M.J. Goringe (The Institute of Physics, London 1982) p.283.

    Google Scholar 

  262. G.M. Rackham, P.M. Jones, J.W. Steeds: “Upper Layer Diffraction Effects in Zone Axis Patterns,” in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.336 and 355.

    Google Scholar 

  263. J.E. Loveluck, J.W. Steeds: “Crystallography of Lithium Tantalate and Quartz,” in Developments in Electron Microscopy and Analysis 1977, ed. by D.L. Misell (The Institute of Physics, London 1977) p.293.

    Google Scholar 

  264. G.M. Rackham, J.W. Steeds: “Convergent Beam Observation near Boundaries and Interfaces,” in Development in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.457.

    Google Scholar 

  265. P. Goodman: A practical method for three-dimensional space-group analysis using convergent beam electron diffraction. Acta Cryst. A31, 804 (1975).

    ADS  Google Scholar 

  266. B.F. Buxton, J.A. Eades, J.W. Steeds, G.M. Rackham: The symmetry of electron diffraction zone axis patterns. Philos. Trans. Roy. Soc. A281, 171 (1976).

    ADS  Google Scholar 

  267. S.J. Pennycook, L.M. Brown, A.J. Craven: Observation of cathodoluminescence at single dislocations by STEM. Philos. Mag. A41, 589 (1980).

    ADS  Google Scholar 

  268. P.M. Petroff, D.V. Lang, J.L. Strudel, R.A. Logan: “Scanning Transmission Electron Microscopy Techniques for Simultaneous Electronic Analysis and Observation of Defects in Semiconductors,” in Scanning Electron Microscopy 1978/I, ed. by O. Johari (SEM Inc., AMF O’Hare 1978) p.325.

    Google Scholar 

  269. S.J. Pennycook, A. Howie: Study of single electron excitations by electron microscopy. Philos. Mag. A41, 809 (1980).

    ADS  Google Scholar 

  270. A. Ourmazd, G.R. Booker: The electrical recombination efficiency of individual edge dislocations and stacking fault defects in n-type silicon. Phys. Status Solidi A55, 771 (1979).

    ADS  Google Scholar 

  271. H. Blumtritt, R. Gleichmann, J. Heydenreich, J. Johansen: Combined scanning (EBIC) and transmission electron microscopic investigations of dislocations in semiconductors. Phys. Status Solidi A55, 611 (1979).

    ADS  Google Scholar 

  272. T.G. Sparrow, U. Valdrè: Application of scanning transmission electron microscopy to semiconductor devices. Philos. Mag. 36, 1517 (1977).

    ADS  Google Scholar 

  273. P.M. Petroff, D.V. Lang: A new spectroscopic technique for imaging the spatial distribution of nonradiative defects in a scanning transmission electron microscope. Appl. Phys. Lett. 31, 60 (1977).

    ADS  Google Scholar 

  274. M.J. Leamy: Charge collection scanning electron microscopy. J. Appl. Phys. Phys. 53, R51 (1982).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1984). Analytical Electron Microscopy. In: Transmission Electron Microscopy. Springer Series in Optical Sciences, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13553-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13553-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13555-6

  • Online ISBN: 978-3-662-13553-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics