Advertisement

Introduction to the Phototrophic Prokaryotes

  • Roger Y. Stanier
  • Norbert Pfennig
  • Hans G. Trüper

Abstract

Four taxonomic groups of classical prokaryotes and one group of archaebacteria (Woese, Magrum, and Fox, 1978) can convert light energy into chemical-bond energy. They belong to three functional categories, in terms of the photochemical mechanisms involved (Table 1).

Keywords

Photosynthetic Apparatus Electron Transport System Purple Bacterium Oxygenic Photosynthesis Green Sulfur Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Cohen-Bazire, G., Pfennig, N., Kunisawa, R. 1964. The fine structure of green bacteria. Journal of Cell Biology 22:207–225.PubMedCrossRefGoogle Scholar
  2. Cohen-Bazire, G., Sistrom, W. R., Stanier, R. Y. 1957. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. Journal of Cellular and Com Chapautive Physiology 49:25–68.CrossRefGoogle Scholar
  3. Cohen, Y., Jorgensen, B. B., Padan, E., Shilo, M. 1975. Sulphide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature 257:489–492.CrossRefGoogle Scholar
  4. Dutton, P. L., Prince, R. C. 1978. Energy conversion processes in bacterial photosynthesis, pp. 523–578. In: Gunsalus, I. C. Stanier, R. Y. (eds.), The bacteria, vol. 6. New York: Academic Press.Google Scholar
  5. Fenchel, T. M., Riedl, R. J. 1970. The sulfide system: A new biotic community underneath the oxidized layer of marine sand bottoms. Marine Biology 7:225–268.CrossRefGoogle Scholar
  6. Friedmann, E. I. 1972. Ecology of lithophytic algal habitats in middle eastern and North American deserts, pp. 182–185. USSR Academy of Sciences: Soviet National Committee for International Biological Programme, International Symposium.Google Scholar
  7. Garlick, S., Oren, A., Padan, E. 1977. Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria. Journal of Bacteriology 129:623–629.PubMedGoogle Scholar
  8. Gibbons, N. E., Murray, R. G. E. 1978. Proposals concerning higher taxa of bacteria. International Journal of Systematic Bacteriology 28:1–6.CrossRefGoogle Scholar
  9. Golubic, S. 1969. Distribution, taxonomy and boring patterns of marine endolithic algae. American Zoologist 9:947–951.Google Scholar
  10. Gorlenko, V. M. 1970. A new phototrophic green sulphur bacterium—Prosthecochloris aestuarii nov. gen. nov. spec. Zeitschrift für Allgemeine Mikrobiologie 10:147–149.PubMedCrossRefGoogle Scholar
  11. Gorlenko, V. M. 1975. Characteristics of filamentous photo-trophic bacteria from fresh-water lakes. [In Russian, with English summary.] Mikrobiologiya 44:756–758.Google Scholar
  12. Gorlenko, V. M., Pivovarova, T. A. 1977. On the belonging of the blue-green alga Oscillatoria coerulescens Gicklhorn 1921 to a new genus of Chlorobacteria Oscillochloris nov. gen. Izvestiya Akademii Nauk SSSR, Seriya Biologicheskaya 3:396–407.Google Scholar
  13. Gray, B. H. 1977. Rejection of Chloropseudomonas ethylica as a nomina rejiciendam. Request for an opinion. International Journal of Systematic Bacteriology 27:168.CrossRefGoogle Scholar
  14. Hansen, T. A., van Gemerden, H. 1972. Sulfide utilization by purple nonsulfur bacteria. Archiv für Mikrobiologie 86:49–56.PubMedCrossRefGoogle Scholar
  15. Kondratieva, E. N., Zhukov, V. G., Ivanovsky, R. N., Petushkova, Yu. P., Monosov, E. Z. 1976. The capacity of phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis. Archives of Microbiology 108:287–292.PubMedCrossRefGoogle Scholar
  16. Kung, M. C., Devault, D., Hess, B., Oesterhelt, D. 1975. Photolysis of bacterial rhodopsin. Biophysical Journal 15:907–911.CrossRefGoogle Scholar
  17. Lauterborn, R. 1915. Die sapropelische Lebewelt (Ein Beitrag zur Biologie des Faulschlammes natürlicher Gewässer). Verhandlungen der Naturhistorisch Medizinischen Vereinigung 13:395–480.Google Scholar
  18. Lemasson, C., Tandeau de Marsac, N., Cohen-Bazire, G. 1973. Role of allophycocyanin as a light-harvesting pigment in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America 70:3130–3133.PubMedCrossRefGoogle Scholar
  19. Lewin, R. A. 1976. Prochlorophyta as a proposed new division of algae. Nature 261:697–698.PubMedCrossRefGoogle Scholar
  20. Lewin, R. A., Withers, N. 1975. Extraordinary pigment composition of a microscopic alga. Nature 256:735–737.CrossRefGoogle Scholar
  21. Molisch, H. 1907. Die Purpurbakterien nach neueren Untersuchungen. pp. 1–45. Jena: Verlag von Gustav Fischer.Google Scholar
  22. Oesterhelt, D., Stoeckenius, W. 1973. Function of a new photoreceptor membrane. Proceedings of the National Academy of Sciences of the United States of America 70:2853–2857.PubMedCrossRefGoogle Scholar
  23. Olson, J. M. 1978. Confused history of Chloropseudomonas ethylica 2K. International Journal of Systematic Bacteriology 28:128–129.CrossRefGoogle Scholar
  24. Olson, J. M., Prince, R. C., Brune, D. C. 1976. Reaction center complexes from green bacteria. Brookhaven Symposium in Biology 28:238–246.Google Scholar
  25. Oren, A., Padan, E. 1978. Induction of anaerobic, photoauto-trophic growth in the cyanobacterium Oscillatoria limnetica. Journal of Bacteriology 133:558–563.PubMedGoogle Scholar
  26. Pfennig, N. 1967. Photosynthetic bacteria. Annual Review of Microbiology 21:285–324.PubMedCrossRefGoogle Scholar
  27. Pfennig, N., Cohen-Bazire, G. 1967. Some properties of the green bacteria Pelodictyon clathratiforme. Archiv für Mikrobiologie 59:226–236.PubMedCrossRefGoogle Scholar
  28. Pfennig, N., Siefert, E., 1977. Metabolism of C1-compounds by Rhodopseudomonas acidophila, pp. 146–147. In: Abstracts of the Second International Symposium ‘Microbial growth on C1-compounds’. USSR: Pushchino.Google Scholar
  29. Pierson, B. K., Castenholz, R. W. 1974. A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantia-cus, gen. and sp. nov. Archives of Microbiology 100:5–24.PubMedCrossRefGoogle Scholar
  30. Rippka, R., Waterbury, J., Cohen-Bazire, G. 1974. A cyanobacterium which lacks thylakoids. Archives of Microbiology 100:419–436.CrossRefGoogle Scholar
  31. Schulz-Baldes, M., Lewin, R. A. 1976. Fine structure of Syn-echocystis didemni (Cyanophyta: Chroococcales). Phycologia 15:1–6.CrossRefGoogle Scholar
  32. Siefert, E., Pfennig, N. 1979. Chemoautotrophic growth of Rhodopseudomonas species with hydrogen and chemotrophic utilization of methanol and formate. Archives of Microbiology 122:177–182.CrossRefGoogle Scholar
  33. Staehelin, L. A., Golecki, J. R., Fuller, R. C., Drews, G. 1978. Visualization of the supramolecular architecture of chlorosomes (chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus. Archives of Microbiology 119:269–277.CrossRefGoogle Scholar
  34. Stanier, R. Y., Cohen-Bazire, G. 1977. Phototrophic prokary-otes: The cyanobacteria. Annual Review of Microbiology 31:225–274.PubMedCrossRefGoogle Scholar
  35. Waterbury, J. B., Stanier, R. Y. 1978. Patterns of growth and development in pleurocapsalean cyanobacteria. Microbiological Reviews 42:2–44.PubMedGoogle Scholar
  36. Whittenbury, R., Dow, C. S. 1977. Morphogenesis and differentiation in Rhodomicrobium vanniellii and other budding and prosthecate bacteria. Bacteriological Reviews 41:754–808.PubMedGoogle Scholar
  37. Woese, C. R., Magrum, L. J., Fox, G. E. 1978. Archaebacteria. Journal of Molecular Evolution 11:245–252.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Roger Y. Stanier
  • Norbert Pfennig
  • Hans G. Trüper

There are no affiliations available

Personalised recommendations