Advertisement

Gas-Vacuolate Bacteria (Apart from Cyanobacteria)

  • Anthony E. Walsby
Chapter

Abstract

Gas vacuoles are found almost exclusively in aquatic bacteria, where they provide buoyancy. By regulating their buoyancy through control of gas vacuoles, these bacteria may be able to select particular depths where the conditions are favorable for growth. In this way the gas vacuole may provide an alternative to the flagellum for movement in the vertical plane. With few exceptions (Lamprocystis, Halobacterium), gas vacuoles are restricted to nonflagellated species (Cohen-Bazire, Kunisawa, and Pfennig, 1969; Walsby, 1978).

Keywords

Phototrophic Bacterium Green Bacterium Obligate Aerobe Phototrophic Sulfur Bacterium Michigan Lake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anagnostidis, K., Overbeck, J. 1966. Methanoxydierer und hypolimnische Schwefelbakterien. Studien zur ökologischen Biöconotik der Gewässermikroorganismen. Berichte der Deutschen Botanischen Gesellschaft 79:163–174.Google Scholar
  2. Caldwell, D. E., Tiedje, J. M. 1975a. A morphological study of anaerobic bacteria from the hypolimnia of two Michigan Lakes. Canadian Journal of Microbiology 21:362–376.PubMedCrossRefGoogle Scholar
  3. Caldwell, D. E., Tiedje, J. M. 1975b. The structure of anaerobic bacteria communities in the hypolimnion of several Michigan Lakes. Canadian Journal of Microbiology 21:377–385.PubMedCrossRefGoogle Scholar
  4. Clark, A. E., Walsby, A. E. 1978a. The occurrence of gas-vacuolate bacteria in lakes. Archives of Microbiology 118:223–228.CrossRefGoogle Scholar
  5. Clark, A. E., Walsby, A. E. 1978b. The development and vertical distribution of populations of gas-vacuolate bacteria in a eutrophic, monomictic lake. Archives of Microbiology 118:229–233.CrossRefGoogle Scholar
  6. Cohen-Bazire, G., Kunisawa, R., Pfennig, N. 1969. Comparative study of the structure of gas vacuoles. Journal of Bacteriology 100:1049–1061.PubMedGoogle Scholar
  7. Dorff, P. 1934. Die Eisenorganismen. Pflanzenforschung, Jena 16:1–62.Google Scholar
  8. Dubinina, G. A., Gorlenko, V. M. 1975. New filamentous photosynthetic green bacteria with gas vacuoles. Mikrobiologiya 44:511–517.Google Scholar
  9. Dubinina, G. A., Kuznetsov, S. I. 1976. The ecological and morphological characteristics of microorganisms in Lesnaya Lamba (Karelia). Internationale Revue der Gesamten Hydrobiologie 61:1–19.CrossRefGoogle Scholar
  10. Gambarian, M. E. 1962. A new species of purple sulphur bacteria Thiopedia servant (n. sp.) [In Russian.] Mikrobiologiya 31:282–283.Google Scholar
  11. Geitler, L., Pascher, A. 1924. Cyanochloridinae-Chlorobac-teriaceae, pp. 451–463. In: Pascher, Die Süsswasser-Flora Deutschlands, Österreichs und der Schweiz. Jena: G. Fischer.Google Scholar
  12. Gorlenko, V. M. 1972. Phototrophic brown sulphur bacteria Pelodictyon phaeum nov. sp. [In Russian.] Mikrobiologiya 41:370–371.Google Scholar
  13. Gorlenko, V. M., Kuznetsov, S. I. 1972. Über die photosyn-thesierenden Bakterien des Kononjer-Sees. Archiv für Hydrobiologie 70:1–13.Google Scholar
  14. Gorlenko, V. M., Lebedeva, E. V. 1971. New green sulphur bacteria with apophyses. [In Russian.] Mikrobiologiya 40:1035–1039.Google Scholar
  15. Hildebrand, E., Dencher, N. 1975. Two photosystems controlling behavioural responses of Halobacterium halobium. Nature 257:46–48.PubMedCrossRefGoogle Scholar
  16. Hirsch, P. 1976. Ecology and morphogenesis of Thiopedia spp. in ponds, lakes and laboratory cultures, pp. 13–15. In: Codd, G. A., Stewart, W. D. P. (eds.), Proceedings of the Second International Symposium on Photosynthetic Prokaryotes, Dundee, Scotland.Google Scholar
  17. Hirsch, P., Pankratz, St. H. 1970. Study of bacterial populations in natural environments by use of submerged electron microscope grids. Zeitschrift für Allgemeine Mikrobiologie 10:589–605.PubMedCrossRefGoogle Scholar
  18. Kolkwitz, R. 1928. Über Gasvakuolen bei Bakterien. Berichte der Deutschen Botanischen Gesellschaft 46:29–34.Google Scholar
  19. Konopka, A. E., Lara, J. C, Staley, J. T. 1977. Isolation and characterization of gas vesicles from Microcyclus aquaticus. Archives of Microbiology 112:133–140.PubMedCrossRefGoogle Scholar
  20. Koppe, F. 1923. Die Schlammflora der Ostholsteinischen Seen und des Bodensees. Archiv für Hydrobiologie und Planktonkunde 14:619–762.Google Scholar
  21. Krasil’nikov, N. A., Duda, V. I., Pivovarov, G. E. 1971. Characteristics of the cell structure of soil anaerobic bacteria forming vesicular caps on their spores. [In Russian.] Mikrobiologiya 40:681–685.Google Scholar
  22. Krasil’nikov, N. A., Pivovarov, G. E., Duda, V. I. 1971. Physiological properties of anaerobic soil bacteria which form vesicular caps on their spores. [In Russian.] Mikrobiologiya 40:896–903.Google Scholar
  23. Larsen, H., Omang, S., Steensland, H. 1967. On the gas vacuoles of halobacteria. Archiv fur Mikrobiologie 59:197–203.PubMedCrossRefGoogle Scholar
  24. Lauterborn, R. 1913. Zur Kenntnis einiger sapropelischer Schizomyceten. Allgemeine Botanische Zeitschrift für Systematik, Floristik, Pflanzengeographie 19:97–100.Google Scholar
  25. Lauterborn, R. 1915. Die sapropelische Lebewelt. Ein Beitrag zur Biologie des Faulschlammes natürlicher Gewässer. Verhandlungen des Naturhistorisch-Medizinischen Vereins zu Heidelberg. N. F. 3:395–481.Google Scholar
  26. Molisch, H. 1906. Zwei neue Purpurbakterien mit Schwebekörperchen. Botanische Zeitung, Abt. 1 64: 223–232.Google Scholar
  27. Nikitin, D. I. 1973. Direct electron microscope techniques for observation of microorganisms in soil. Ecological Research Committee Bulletin, Swedish Natural Science Research 17:85–92.Google Scholar
  28. Oesterhelt, D., Stoeckenius, W. 1973. Functions of a new photoreceptor membrane. Proceedings of the National Academy of Sciences of the United States of America 70:2853–2857.PubMedCrossRefGoogle Scholar
  29. Perfiliev, B. V. 1914. The chlorophyll-bearing microbe, Pelodictyon chlathratiforme, of the green bacteria group. Zhurnal Mikrobiologii 1 (3–5):222–227.Google Scholar
  30. Petter, H. F. M. 1931. On bacteria of salted fish. Proceedings of the Academy of Science, Amsterdam 34:1417–1423.Google Scholar
  31. Pfennig, N. 1967. Photosynthetic bacteria. Annual Review of Microbiology 21:285–324.PubMedCrossRefGoogle Scholar
  32. Pfennig, N., Cohen-Bazire, G. 1967. Some properties of the green bacterium Pelodictyon chlathratiforme. Archiv für Mikrobiologie 59:226–236.PubMedCrossRefGoogle Scholar
  33. Pfennig, N., Trüper, H. G. 1971. New nomenclatural combinations in the phototrophic sulfur bacteria. International Journal of Systematic Bacteriology 21:11–14.CrossRefGoogle Scholar
  34. Pfennig, N., Trüper, H. G. 1974. The phototrophic bacteria, pp. 24–60. In: Buchanan, R. E., Gibbons, N. E. (eds.), Bergey’s manual of determinative bacteriology, 8th ed. Baltimore: Williams & Wilkins.Google Scholar
  35. Simon, R. D. 1978. Halobacterium strain 5 contains a plasmid which is correlated with the presence of gas vacuoles. Nature 273:314–316.PubMedCrossRefGoogle Scholar
  36. Skuja, H. 1948. Taxonomie des Phytoplanktons einiger Seen in Uppland, Symbolae Botanicae Upsalienses 9 (3): 1–399.Google Scholar
  37. Skuja, H. 1956. Taxonomische und biologische Studien über das Phytoplankton schwedischer Binnengewässer. Nova Acta Regiae Societatis Scientiarum Upsaliensis, Ser. IV 16 (3):1–404.Google Scholar
  38. Skuja, H. 1964. Grundzüge der Algenflora und Algenvegetation der Fjeldgegenden um Abisko in Schwedisch-Lappland. Nova Acta Regiae Societatis Scientiarum Upsaliensis Ser. IV 18 (3): 1–465.Google Scholar
  39. Staley, J. T. 1968. Prosthecomicrobium and Ancalomicrohium: New prosthecate freshwater bacteria. Journal of Bacteriology 95:1921–1942.PubMedGoogle Scholar
  40. Stoeckenius, W., Kunau, W. H. 1968. Further characterization of particulate fractions from lysed cell envelopes of Halobacterium halobium and isolation of gas vacuole membranes. Journal of Cell Biology 38:336–357.CrossRefGoogle Scholar
  41. Van Ert, M., Staley, J. T. 1971a. Gas-vacuolated strains of Microcyclus aquaticus. Journal of Bacteriology 108: 236–240.PubMedGoogle Scholar
  42. Van Ert, M., Staley, J. T. 1971b. A new gas vacuolated heterotrophic rod from freshwaters. Archiv für Mikrobiologie 80:70–77.PubMedCrossRefGoogle Scholar
  43. Walsby, A. E. 1972. Structure and function of gas vacuoles. Bacteriological Reviews 36:1–32.PubMedGoogle Scholar
  44. Walsby, A. E. 1974. The identification of gas vacuoles and their abundance in the hypolimnetic bacteria of Arco Lake, Minnesota. Microbial Ecology 1:51–61.CrossRefGoogle Scholar
  45. Walsby, A. E. 1976. The buoyancy-providing role of gas vacuoles in an aerobic bacterium. Archives of Microbiology 109:135–142.CrossRefGoogle Scholar
  46. Walsby, A. E. 1977. Absence of gas vesicle protein in a mutant of Anabaena flos-aquae. Archives of Microbiology 114:167–170.CrossRefGoogle Scholar
  47. Walsby, A. E. 1978. The gas vesicles of aquatic prokaryotes, pp. 327–358. In: Stanier, R. Y., Rogers, H. J., Ward, J. B. (eds.), Relations between structure and function in the prokaryotic cell. Twenty-eighth Symposium of the Society for General Microbiology. Cambridge: University Press.Google Scholar
  48. Widdel, F., Pfennig, N. 1977. A new anaerobic, sporing, acetate-oxidizing, sulphate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Archives of Microbiology 112:119–122.PubMedCrossRefGoogle Scholar
  49. Winogradsky, S. 1888. Beiträge zur Morphologie und Physiologie der Bactérien. Heft I. Zur Morphologie und Physiologie der Schwefelbacterien, pp. 1–120. Leipzig: Arthur Felix.Google Scholar
  50. Zhilina, T. N. 1971. The fine structure of Methanosarcina. [In Russian.] Mikrobiologiya 40:674–680.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Anthony E. Walsby

There are no affiliations available

Personalised recommendations