The Cerebellum as a Computer?



It is generally believed that in some way the cerebellum functions as a type of computer that is particularly concerned with the smooth and effective control of movement. It is assumed that the cerebellum integrates and organizes the information flowing into it along the various neural pathways and that the consequent cerebellar output either goes down the spinal cord to the motoneurones and so participates in the control of movement or else is returned to the basal ganglia and the cerebral cortex, there to modify the control of movement from these higher centers.


Purkinje Cell Cerebellar Cortex Mossy Fiber Anterior Lobe Golgi Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, E. D.: Discharge frequencies in the cerebral and cerebellar cortex. J. Physiol. (Lond.) 83, 32P - 33P (1935).Google Scholar
  2. Armstrong, D. M., J. C. Eccles, R. J. Harvey, and P. B. C. Matthews: Responses in the dorsal accessory olive of the cat to stimulation of hind limb afferents. J. Physiol. (Lond.) (in press, 1967).Google Scholar
  3. Armstrong, D. M., and R. J. Harvey: Responses in the inferior olive to stimulation of the cerebellar and cerebral cortices in the cat. J. Physiol. (Lond.) 187, 553–574 (1966).Google Scholar
  4. Braitenberg, V., and R. P. Atwood: Morphological observations on the cerebellar cortex. J. comp. Neurol. 109, 1–34 (1958).PubMedCrossRefGoogle Scholar
  5. Brodal, A.: Experimentelle Untersuchungen über die olivocerebellare Lokalisation. Z. ges. Neurol. Psychiat. 169, 1–153 (1940).CrossRefGoogle Scholar
  6. Brodal, A.: The Reticular Formation of the Brain Stem: Anatomical Aspects and Functional Correlations. The William Ramsay Henderson Trust Lecture. Edinburgh: Oliver and Boyd 1957.Google Scholar
  7. Brodal, A., F. Walberg, and T. Blackstad: Termination of spinal afferents to inferior olive in cat. J. Neurophysiol. 13, 431–454 (1950).PubMedGoogle Scholar
  8. Dow, R. S.: The evolution and anatomy of the cerebellum. Biol. Rev. 17, 179–220 (1942).CrossRefGoogle Scholar
  9. Dow, R. S., and G. MoRuzzi: The Physiology and Pathology of the Cerebellum. 675 pp. Minneapolis: University of Minnesota Press 1958.Google Scholar
  10. Eccles, J. C., J. I. Hubbard, and O. OscArsson: Intracellular recording from cells of the ventral spino-cerebellar tract. J. Physiol. (Lond.) 158, 486–516 (1961).Google Scholar
  11. Eccles, J. C., R. LI.INns, The excitatory synaptic action of climbing fibers on the Purkinje cells of the cerebellum. J. Physiol. (Lond.) 182, 268–296 (1966d).Google Scholar
  12. Eccles, J. C., O. Oscarsson, and W. D. Willis: Synaptic action of Group I and II afferent fibers of muscle on the cells of the dorsal spino-cerebellar tract. J. Physiol. (Lond.) 158, 517–543 (1961).Google Scholar
  13. Eccles, J. C., K. Sasaki, R. F. Schmidt, and W. D. Willis: Inhibition of discharges into the dorsal and ventral spinocerebellar tracts. J. Neurophysiol. 26, 635–645 (1963).Google Scholar
  14. Granit, R., and C. G. Phillips: Excitatory and inhibitory processes acting upon individual Purkinje cells of the cerebellum in cats. J. Physiol. (Lond.) 133, 520–547 (1956).Google Scholar
  15. Grant, G., and O. Oscarsson: Mass discharges evoked in the olivocerebellar tract on stimula- tion of muscle and skin nerves. Exp. Brain Res. 1, 329–337 (1966).PubMedGoogle Scholar
  16. Grant, G., and I. Rosen: Functional organization of the spinoreticulo-cerebellar path with identification of its spinal component. Exp. Brain Res. 1, 306–319 (1966).PubMedGoogle Scholar
  17. Hamori, J., and J. Szentagothai: The “Crossing Over” synapse. An electron microscope study of the molecular layer in the cerebellar cortex. Acta biol. Acad. Sci. hung. 15, 95–117 (1964).CrossRefGoogle Scholar
  18. Holmqvist, B., O. Oscarsson, and I. RosÉN: Functional organization of cuneocerebellar tract in cat. Acta physiol. scand. 58, 216–235 (1963).PubMedCrossRefGoogle Scholar
  19. Jansen, J., Das Kleinhirn. In: Handbuch der mikroskopischen Anatomie des Menschen, vol. 4/8 Nervensystem, pp. 1–323. Ed. W. v. MÖLlendorff and W. Bargmann. Berlin-Göttingen-Heidelberg: Springer 1958.Google Scholar
  20. Jansen, J. K. S.,K. Nicolaysen, and T. Rudjord: Discharge pattern of neurones of the dorsal spinocerebellar tract activated by static extension of primary endings of muscle spindles. J. Neurophysiol. 29, 1061–1086 (1966).PubMedGoogle Scholar
  21. Jansen, J. K. S., and T. Rudjord: Dorsal spinocerebellar tract: Response pattern of nerve fibers to muscle stretch. Science 149, 1109–1111 (1965).PubMedCrossRefGoogle Scholar
  22. Laporte, Y., and A. Lundberg: Functional organization of the dorsal spino-cerebellar tract in the cat. Iii. Single fiber recording in Fleschig’s fasciculus on adequate stimulation of primary afferent neurones.Acta physiol. scand. 36, 204–218 (1956).PubMedCrossRefGoogle Scholar
  23. Lundberg, A.: Ascending spinal hindlimb pathway in the cat. In: Progress in Brain Research, vol. 12, pp. 135–163. Ed. J. C. Eccles and J. P. SchadÉ. AmsterdamLondon-New York: Elsevier 1964.Google Scholar
  24. Lundberg, A., and O. Oscarsson: Functional organization of the dorsal spino-cerebellar tract in the cat. IV. Synaptic connections of afferents from Golgi tendon organs and muscle spindles. Acta physiol. scand. 38, 53–75 (1956).PubMedCrossRefGoogle Scholar
  25. Lundberg, A., and O. Oscarsson: Functional organization of the dorsal spino-cerebellar tract in the cat. Vii. Identification of units by antidromic activation from the cerebellar cortex with recognition of five functional subdivisions. Acta physiol. scand. 50, 356–374 (1960).PubMedCrossRefGoogle Scholar
  26. Lundberg, A., and O. Oscarsson: Functional organization of the ventral spino-cerebellar tract in the cat. IV. Identification of units by antidromic activation from the cerebellar cortex. Acta physiol. scand. 54, 270–286 (1962).PubMedCrossRefGoogle Scholar
  27. Lundberg, A., and G. Winsbury: Functional organization of the dorsal spino-cerebellar tract in the cat. VI. Further experiments on excitation from tendon organ and muscle spindle afferents. Acta physiol. scand. 49, 165–170 (1960).PubMedCrossRefGoogle Scholar
  28. Morin, F., G. Lamarche, and A. Z. OsTrowsKI: Responses of the inferior olive to peripheral stimuli and the spinal pathways involved. Amer. J. Physiol. 189, 401–406 (1957).PubMedGoogle Scholar
  29. Oscarsson, O.: Functional organization of the ventral spinocerebellar tract in the cat. II. Connections with muscle, joint and skin nerve afferents and effects on adequate stimulation of various receptors. Acta physiol. scand. 42, Suppl. 146, 1–107 (1957).Google Scholar
  30. Oscarsson, O.: Functional organization of the spino-and cuneocerebellar tracts. Physiol. Rev. 45, 495–522 (1965).PubMedGoogle Scholar
  31. Oscarsson, O.: Functional significance of information channels from the spinal cord to the cerebellum. Proc. Symposium on Neurophysiological basis of normal and abnormal motor activities. New York: Rockefeller Univ. Press 1967.Google Scholar
  32. Oscarsson, O, and I. RosÉN: Response characteristics of reticulocerebellar neurones activated from spinal afferents. Exp. Brain Res. 1, 320–328 (1966).PubMedCrossRefGoogle Scholar
  33. Oscarsson, O, and N. Uddenberg: Identification of a spinocerebellar tract activated from forelimb afferents in the cat. Acta physiol. scand. 62, 125–136 (1964).PubMedCrossRefGoogle Scholar
  34. Oscarsson, O., and N. Uddenberg: Somatotopic termination of spino-olivo-cerebellar path. Brain Res. 3, 204–207 (1966).PubMedCrossRefGoogle Scholar
  35. Pompeiano, O., and E. Cotti: Analisi microelecttrodica delle proiezioni cerebellodeitersiane. Arch. Sci. biol. (Bologna) 43, 57–101 (1959).Google Scholar
  36. Sasaki, K., and P. Strata: Responses evoked in the cerebellar cortex by stimulating mossy fiber pathways to the cerebellum. Exp. Brain Res. 3, 95–110 (1967).PubMedCrossRefGoogle Scholar
  37. Sedgewick, E. M., and T. D. Williams: Responses of single units in the inferior olive to stimulation of the limb nerves, peripheral skin receptors, cerebellum, caudate nucleus and motor cortex. J. Physiol. (Lond.) 189, 261–280 (1967).Google Scholar
  38. Sherrington, C. S.,and A. S.Owell: Receiving areas of the tactile, auditory and visual systems in the cerebellum. J. Neurophysiol. 7, 337–357 (1944).Google Scholar
  39. Szentagothai, J.: Somatotopic arrangement of synapses of primary sensory neurones in Clarke’s column. Acta morph. Acad. Sci. hung. 10, 307–311 (1961).Google Scholar
  40. Szentagothai, J.: The use of degeneration methods in the investigation of short neuronal connexions. In: Progress in Brain Research, vol. 14: Degeneration Patterns in the Nervous System, pp. 1–32. Ed. M. Singer and J. P. Schade. Amsterdam-London-New York: Elsevier 1965aGoogle Scholar
  41. Szentagothai, J., K. Rajkovits: Über den Ursprung der Kletterfasern des Kleinhirns. Z. Anat. Entwickl.-Gesch. 121, 130–141 (1959).CrossRefGoogle Scholar
  42. Walberg, F.: Descending connections to the inferior olive: An experimental study in the cat. J. comp. Neur. 104, 77–174 (1956).PubMedCrossRefGoogle Scholar
  43. Wilson, V. J., M. Kato, R. C. Thomas, and B. W. Peterson: Excitation of lateral vestibular neurones by peripheral afferent fibers. J. Neurophysiol. 29, 508–529 (1966).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1967

Authors and Affiliations

  1. 1.Institute for Biomedical ResearchAmerican Medical Association, Education and Research FoundationChicagoUSA
  2. 2.University of TokyoJapan
  3. 3.Department of Anatomy University Medical SchoolBudapest, IX.Hungary

Personalised recommendations