Skip to main content

Strong shape of metric compacta

  • Chapter
  • 689 Accesses

Part of the book series: Springer Monographs in Mathematics ((SMM))

Abstract

This section is devoted to the strong shape theory of metric compacta. Specialization of the theory to this important case brings considerable simplification. The reason for this is that metric compacta admit polyhedral resolutions, which are sequences, and the coherent category of sequences is rather simple (see 3). In the first subsection it is shown that the strong shape category of metric compacta SSh(CM) has an elementary description, first introduced by J.B. Quigley. The second subsection is devoted to the complement theorem, which relates strong shape to proper homotopy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Quigley, J.B. (1973): An exact sequence from the n th to (n-1) st fundamental group. Fund. Math. 77, 195–210

    MathSciNet  MATH  Google Scholar 

  • Quigley, J.B. (1976): Equivalence of fundamental and approaching groups of movable pointed compacta. Fund. Math. 91, 73–83

    MathSciNet  MATH  Google Scholar 

  • Kodama, Y., Koyama, A. (1979): Hurewicz isomorphism theorem for Steenrod homology. Proc. Amer. Math. Soc. 74, 363–367

    Article  MathSciNet  MATH  Google Scholar 

  • Kodama, Y., Ono, J. (1979): On fine shape theory. Fund. Math. 105, 29–39

    MathSciNet  MATH  Google Scholar 

  • Kodama, Y., Ono, J. (1980): On fine shape theory, II. Fund. Math. 108, 89–98

    MathSciNet  Google Scholar 

  • Lisica, Ju.T. (1983): Strong shape theory and multivalued maps. Glasnik Mat. 18, 371–382

    MathSciNet  Google Scholar 

  • Lisica, Ju.T. (to appear): Second structure theorem for strong homology. Topology Appl.

    Google Scholar 

  • Lisica, Ju.T., Mardesié, S. (1983): Steenrod-Sitnikov homology for arbitrary spaces. Bull. Amer. Math. Soc. 9, 207–210

    Article  MathSciNet  MATH  Google Scholar 

  • Lisica, Ju.T., Mardesié, S. (1984a): Coherent prohomotopy and strong shape category of topological spaces. Proc. Internat. Topology Conference (Leningrad 1982 ). Lecture Notes in Math. 1060, Springer, Berlin Heidelberg New York, pp. 164–173

    Google Scholar 

  • Lisica, Ju.T., Mardesié, S. (1984b): Coherent prohomotopy and strong shape theory. Glasnik Mat. 19, 335–399

    Google Scholar 

  • Lisica, Ju.T., Mardesié, S. (1985a): Coherent prohomotopy and strong shape of metric compacta. Glasnik Mat. 20, 159–186

    Google Scholar 

  • Lisica, Ju.T., Mardesié, S. (1985b): Pasting strong shape morphisms. Glasnik Mat. 20, 187–201

    Google Scholar 

  • Lisica, Ju.T., Mardesié, S. (1985c): Coherent prohomotopy and strong shape for pairs. Glasnik Mat. 20, 419–434

    Google Scholar 

  • Lisica, Ju.T., Mardesié, S. (1985d): Strong homology of inverse systems of spaces, I. Topology Appl. 19, 29–43

    Article  MathSciNet  MATH  Google Scholar 

  • Lisica, Ju.T., Mardesié, S. (1985e): Strong homology of inverse systems of spaces, II. Topology Appl. 19, 45–64

    Article  MathSciNet  Google Scholar 

  • Lisica, Ju.T., Mardesié, S. (1985f): Strong homology of inverse systems, III. Topology Appl. 20, 29–37

    Article  MathSciNet  MATH  Google Scholar 

  • Lisica, Ju.T., Mardesié, S. (1986): Steenrod homology, in Geometric and Algebraic Topology. Banach Center Publ., Warsaw, 18, pp. 329–343

    Google Scholar 

  • Chapman, T.A. (1972): On some applications of infinite-dimensional manifolds to the theory of shape. Fund. Math. 76, 181–193

    MathSciNet  MATH  Google Scholar 

  • Chapman, T.A. (1976): Lectures on Hilbert cube manifolds. CBMS 28, Amer. Math. Soc., Providence, R. I

    Google Scholar 

  • Chapman, T.A., Siebenmann, L.C. (1976): Finding a boundary for a Hilbert cube manifold. Acta Math. 137, 171–208

    Article  MathSciNet  Google Scholar 

  • Edwards, D.A., Hastings, H.M. (1976a): Cech and Steenrod homotopy theories with applications to Geometric Topology. Lecture Notes in Math. 542, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Edwards, D.A., Hastings, H.M. (1976b): Every weak proper homotopy equivalence is weakly properly homotopic to a proper homotopy equivalence. Trans. Amer. Math. Soc. 221, 239–248

    Article  MathSciNet  MATH  Google Scholar 

  • Edwards, D.A., Hastings, H.M. (1980): Cech theory: its past, present and future. Rocky Mountain J. Math. 10, 429–468

    MathSciNet  MATH  Google Scholar 

  • Sher, R.B. (1981): Complement theorems in shape theory, in Shape theory and geometric topology. Lecture Notes in Math. 870, Springer, Berlin Heidelberg New York, pp. 150–168

    Google Scholar 

  • Sher, R.B. (1987): Complement theorems in shape theory, II, in Geometric topology and shape theory. Lecture Notes in Math. 1283, Springer, Berlin Heidelberg New York, pp. 212–220

    Chapter  Google Scholar 

  • Mrozik, P. (1984): Chapman’s complement theorem in shape theory: A version for the infinite poroduct of lines. Arch. Math. 42, 564–567

    Article  MathSciNet  MATH  Google Scholar 

  • Mrozik, P. (1985): Chapman’s category isomorphism for arbitrary AR’s. Fund. Math. 125, 195–208

    MathSciNet  MATH  Google Scholar 

  • Mrozik, P. (1986): Hereditary shape equivalences and complement theorems. Topology Appl. 22, 131–137

    Article  MathSciNet  MATH  Google Scholar 

  • Mrozik, P. (1990): Mapping cylinders of approaching maps and strong shape. J. London Math. Soc. (2) 41, 159–174

    Article  MathSciNet  MATH  Google Scholar 

  • Mrozik, P. (1991): Finite-dimensional categorical complement theorems in strong shape theory and a principle of reversing maps. Compositio Math. 77, 179–197

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mardešić, S. (2000). Strong shape of metric compacta. In: Strong Shape and Homology. Springer Monographs in Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13064-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13064-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08546-8

  • Online ISBN: 978-3-662-13064-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics