Skip to main content

The Wiener Process, the Stochastic Integral over the Wiener Process, and Stochastic Differential Equations

  • Chapter
Statistics of Random Processes

Part of the book series: Applications of Mathematics ((SMAP,volume 5))

  • 3364 Accesses

Abstract

Let (Ω, F, P) be a probability space and β = (β t), t ≥ 0, be a Brownian motion process (in the sense of the definition given in Section 1.4). Denote \(F_t^\beta= \sigma \left\{ {\omega :{\beta _s}} \right.,s \leqslant \left. t \right\}\) Then, according to (1.30) and (1.31),(P-a.s)

$$M\left( {{\beta _t}|F_s^\beta } \right) = {\beta _s},t \geqslant s $$
(4.1)
$$M\left[ {{{\left( {{\beta _t} - {\beta _s}} \right)}^2}|F_s^\beta } \right] = t - s,t \geqslant s. $$
(4.2)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

Notes and References. 1

  1. Anulova, A., Veretennikov, A., Krylov, N., Liptser, R.S. and Shiryaev, A.N. (1998): Stochastic Calculus. Encyclopedia of Mathematical Sciences. vol 45, Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  2. Doob, J.L. (1954): Stochastic Processes. Wiley, New York

    MATH  Google Scholar 

  3. Itô, K. (1944): Stochastic integrals. Proc. Imp. Acad. Tokyo, 20, 519 - 24

    Article  MathSciNet  MATH  Google Scholar 

  4. Gikhman, I.I. and Skorokhod, A.V. (1969): Introduction to the Theory of Random Processes. Saunders, Philadelphia

    Google Scholar 

  5. Gikhman, I.I. and Skorokhod, A.V. (1980): Stochastic Differential Equations. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  6. Yershov, M.P. (1972): On representation of Itô processes. Teor. Veroyatn. Primen., 17, 1, 167 - 72

    Google Scholar 

  7. Dynkin, E.B. (1965): Markov Processes. Springer-Verlag, Berlin Göttingen Heidelberg

    MATH  Google Scholar 

  8. Itô, K. (1959): On a formula concerning stochastic differentials. Nagoya Mat. J., 3, 5, 55 - 65

    Google Scholar 

  9. Skorokhod, A.V. (1965): Studies in the Theory of Random Processes. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  10. Yershov, M.P. (1972): On representation of Itô processes. Teor. Veroyatn. Primen., 17, 1, 167 - 72

    Google Scholar 

  11. Yershov, M.P. (1972). On absolute continuity of measures corresponding to diffusion type processes. Teor. Veroyatn. Primen., 17, 1, 173 - 8.

    Google Scholar 

  12. Shiryaev, A.N. (1966): Stochastic equations of nonlinear filtering of jump Markov processes. Probi. Peredachi Inf., 2, 3, 3 - 22

    Google Scholar 

  13. Liptser, R.S. and Shiryaev, A.N. (1968): Nonlinear filtering of diffusion type Markov processes. Tr. Mat. Inst. Steklova, 104, 135 - 80

    Google Scholar 

  14. Yamada, T. and Watanabe Sh. (1971): On the uniqueness of solution of stochastic differential equations. J. Math. Kyoto Univ., 11, 1, 155 - 67

    MathSciNet  MATH  Google Scholar 

  15. Itô, K. and Nisio, M. (1964): On stationary solutions of stochastic differential equations. J. Math. Kyoto Univ., 4, 1, 1 - 79.

    MathSciNet  MATH  Google Scholar 

  16. Kallianpur, G. and Striebel, C. (1968): Estimation of stochastic systems: arbitrary system process with additive noise observation errors. Ann. Math. Stat., 39, 785 - 801

    Article  MathSciNet  MATH  Google Scholar 

  17. Tsyrelson, B.S. (1975): An example of a stochastic equation having no strong solution. Teor. Veroyatn. Primen., 20, 2, 427 - 30

    Google Scholar 

Notes and References.2

  1. Karatzas, I. and Shreve, S.E. (1991): Brownian Motion and Stochastic Calculus. Springer-Verlag, New York Berl in Heidelberg

    MATH  Google Scholar 

  2. Revuz, D. and Yor, M. ( 1991, 1994, 1998 ): Continuous Martingales and Brownian Motion. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  3. Rogers, C. and Williams, D. 1987: Diffusions, Markov Processes and Martingales: Itô Calculus. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liptser, R.S., Shiryaev, A.N. (2001). The Wiener Process, the Stochastic Integral over the Wiener Process, and Stochastic Differential Equations. In: Statistics of Random Processes. Applications of Mathematics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13043-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13043-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08366-2

  • Online ISBN: 978-3-662-13043-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics