Skip to main content

Abstract

Preliminary work on relaxin, or rather on the relaxin perimeters, had built up such a “curiosity pressure” that the trials and tribu-lations of a total synthesis became the lesser problem. When a peptide chemist faces a new synthesis he will immediately divide the problem into two major categories, one the overall plan of development of a primary structure (fragment condensation versus synthesis by sequential addition of amino acids) and secondly the decision concerning semipermanent side chain protections that must be compatible with the overall plan. If, for example, repeated exposure to weak acid is part of the synthesis of the primary backbone, acid labile semipermanent protecting groups can only be used if they require a much stronger acid for cleavage (trifluoroacetic acid vs. hydrogen fluoride) and so on. We will describe the synthesis of relaxins, including the special problems, in detail so that a student may derive sufficient information from the general concept for the synthesis of other peptides under similar conditions. For that reason a few of the approaches that did not work will be useful. In chapter 9 the problem of proper documentation of syntheses will be discussed as well as the recording of this type of research for it to become part of the serious scientific literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Walder JA, Walder RY, Heller MJ et al. Complementary carrier peptide synthesis: General strategy and implications for prebiotic origin of peptide synthesis. Proc Natl Acad Sci USA 1979; 76: 51–55.

    Google Scholar 

  2. Ten Kortenaar PBW, Van Dijk BG, Peeters JM et al. Rapid and efficient method for the preparation of Fmoc-amino acids starting from 9-fluorenylmethanol. Int J Peptide Protein Res1986; 27: 398–400.

    Google Scholar 

  3. Merrifield RB. Solid phase peptide synthesis: I The synthesis of a tetrapeptide. J Am Chem Soc 1963; 85:2149-2154.

    Google Scholar 

  4. Atherton E, Sheppard RC. Solid phase peptide synthesis, a practical approach. Oxford: IRL Press, 1989. ( Rickwood D, Hames BD, eds. Practical Approach Series;

    Google Scholar 

  5. Stewart JM, Young JD. Solid phase peptide synthesis. Rockford, IL: Pierce Chemical, 1984.

    Google Scholar 

  6. Katsoyannis PG, Tometsko A. Insulin synthesis by recombination of A and B chains: A highly efficient method. Proc Natl Acad Sci USA 1966; 55: 1554–1561.

    Article  PubMed  CAS  Google Scholar 

  7. Gattner HG, Krail G, Danho W et al. Eine verbesserte Methode der Kombination von Insulinketten zur Darstellung von Insulinanalogen. Hoppe Seyler’s Z Physiol Chem 1981; 362:1043-1049.

    Google Scholar 

  8. Canova-Davis E, Baldonado IP, Teshima GM. Characterization of chemically synthesized human relaxin by high performance liquid chromatography. J Chromatogr 1990; 508: 81–96.

    Article  PubMed  CAS  Google Scholar 

  9. Steiner DF, Clark JL. The sponteneous oxidation of reduced beef and rat proinsulin. Proc Natl Acad Sci USA 1968; 60: 622–629.

    Article  PubMed  CAS  Google Scholar 

  10. Steiner DF, Rouille Y, Gong Q et al. The role of prohormone convertases in insulin biosynthesis: Evidence for inherited defects in their action in man and experimental animals. Diabetes & Metabolism 1996; 22: 94–104.

    CAS  Google Scholar 

  11. Halban PA. Proinsulin processing in the regulated and the constitutive secretory pathway. Diabetologia 1994; 37:S 6 5 - 7 2 .

    Google Scholar 

  12. Wittinghofer A. Synthese der Schafinsulin-A-Kette mit 6-iiDisulfidring. Liebigs Ann Chem 1974;:290-305.

    Google Scholar 

  13. Sieber P, Kamber B, Eisler K et al. 158 Synthese von Humaninsulin II Aufbau des cyclischen Fragments A(1–13). Heiv Chim Acta 1976; 59: 1489–1497.

    Article  CAS  Google Scholar 

  14. Birr C, Pipkorn R. Voll aktives Insulin durch selektive Bildung der Disulfidbrücken zwischen synthetischer A-Kette und natürlicher B-Kette. Angew Chem 1979; 91: 571–573.

    Google Scholar 

  15. Kamber B, Hartmann A, Eisler K et al. 96 The synthesis of cystine peptides by iodine oxidation of S-trityl-cysteine and S-acetamidomethyl-cysteine peptides. Heiv Chim Acta 198o; 63: 899–915.

    Google Scholar 

  16. Büllesbach EE, Schwabe C. Sequential synthesis of an unsymmetrical two-chain disulfide peptide on solid support. Tetrahedron Lett 1992; 335881–5884.

    Google Scholar 

  17. Kemp BE, Niall HD. Relaxin. Vitamins and Hormones 1984; 4179-115.

    Google Scholar 

  18. Kent SBH. Chemical synthesis of peptides and proteins. Ann Rev Biochem 1988; 57: 957–989.

    Article  PubMed  CAS  Google Scholar 

  19. Baker EN, Blundell TL, Cutfield JF et al. The structure of 2Zn pig insulin crystals at 1.5A resolution. Phil Trans R Soc Lond B 1988; 319: 369–456.

    Article  CAS  Google Scholar 

  20. Eigenbrot C, Randal M, Quan C et al. X-ray structure of human relaxin at 1.5 A: Comparison to insulin and implications for receptor binding determinants. J Mol Biol 1991; 221:15–21.

    Google Scholar 

  21. Thim L, Hansen MT, Norris K et al. Secretion and processing of insulin precursors in yeast. Proc Natl Acad Sci USA 1986; 83: 6766–677o.

    Article  PubMed  CAS  Google Scholar 

  22. Markussen J, Jorgensen KH, Sorensen AR et al. Single chain des(B3o)insulin: Intramolecular crosslinking of insulin by trypsin catalyzed transpeptidation. Int J Peptide Protein Res 1985; 26: 70–77.

    Article  CAS  Google Scholar 

  23. Derewenda U, Derewenda Z, Dodson EJ et al. X-ray analysis of a single chain B29–A1 peptide-linked insulin molecule: A completely inactive analogue. J Mol Biol 1991; 220:425-433.

    Google Scholar 

  24. Bernatowicz MS, Matsueda R, Matsueda GR. Preparation of Boc-[S(3-nitro-2-pyridinesulfenyl)]-cysteine and its use for unsymmetrical disulfide bond formation. Int J Peptide Protein Res 1986; 28: 107–112.

    Article  CAS  Google Scholar 

  25. Yang S, Heyn H, Zhang YZ et al. The expression of human relaxin in yeast. Arch Biochem Biophys 1993; 300734-737.

    Google Scholar 

  26. Beyerman HC, Izeboud E, Kranenburg P et al. Synthesis of methionine-containing peptides via their sulfoxides. In: Gross E, Meienhofer J, eds. Sixth American Peptide Symposium. Pierce Chemical Co. Rockford Il, 1979: 333–336.

    Google Scholar 

  27. Izeboud E, Beyerman HC. Synthesis of substance P via its sulfoxide by the repetitive excess mixed anhydride (REMA) method. Red Tray Chim Pays-Bas Neth 1978; 97: 1–6.

    Article  CAS  Google Scholar 

  28. Büllesbach EE, Schwabe C. Total synthesis of human relaxin and human relaxin derivatives by solid phase peptide synthesis and site-directed chain combination. J Biol Chem 1991; 266: 10754–10761.

    PubMed  Google Scholar 

  29. Nakagawa SH, Tager HS. Role of the phenylalanine B25 side chain in directing insulin interaction with its receptor: Steric and conformational effects. J Biol Chem 1986; 261:7332-7341.

    Google Scholar 

  30. Casaretto M, Spoden M, Diaconescu C et al. Shortened insulin with enhanced in vitro potency. Biol Chem Hoppe Seyler 1987; 368: 709–716.

    Article  PubMed  CAS  Google Scholar 

  31. Mirmira R, Nakagawa SH, Tager HS. Importance of the character and configuration of residues B24, B25, and B26 in insulin-receptor interactions. J Biol Chem 1991; 266: 1428–1436.

    PubMed  CAS  Google Scholar 

  32. Geiger R, Geisen K, Summ HD et al. [A1-D-alanine]insulin. Hoppe Seyler’s Z Physiol Chem 1975; 356:1635-1649.

    Google Scholar 

  33. Nakagawa SH, Tager HS. Importance of aliphatic side-chain structure at position 2 and 3 of the insulin A chain in insulin-receptor interactions. Biochemistry 1992; 31: 3204–3214.

    Article  PubMed  CAS  Google Scholar 

  34. Gattner HG, Schmitt EW. [A21-Asparaginimide] insulin. Saponification of insulin hexamethyl ester, I. Hoppe-Seylers Z Physiol Chem 1977; 358: 105–113.

    Article  PubMed  CAS  Google Scholar 

  35. Sieber P, Kamber B, Hartmann A et al. Totalsynthese von Human insulin: Beschreibung der Endstufen. Heiv Chim Acta 1977; 60: 27–37.

    Article  CAS  Google Scholar 

  36. Brange J, Owens DR, Kang S et al. Monomeric insulins and their experimental and clinical applications. Diabetes Care 1990; 13: 923-954.

    Google Scholar 

  37. Brems DN, Brown PL, Bryant C et al. Improved insulin stability through amino acid substitution. Protein Eng 1992; 5: 519–525.

    Google Scholar 

  38. Hoogwerf BJ, Mehta A, Reddy S. Advances in the treatment of diabetes mellitus in the elderly. Development of insulin analogues. Drugs & Aging 1996; 9: 438–448.

    Google Scholar 

  39. Wieland T, Bodanszky M. The World of Peptides: A Brief History of Peptide Chemistry. Berlin: Springer Verlag, 1991.

    Google Scholar 

  40. Hofmann K, Smithers MJ, Finn FM. Studies on polypeptides. XXXV. Synthesis of S-peptide 1–20 and its ability to activate S-protein. J Am Chem Soc 1966; 88: 4017–4019.

    PubMed  CAS  Google Scholar 

  41. Hirschmann R, Nutt RF, Veber DF et al. Studies on the total synthesis of an enzyme. V. The preparation of enzymatically active material. J Am Chem Soc 1969; 91: 507–508.

    Article  PubMed  CAS  Google Scholar 

  42. Gutte B, Merrifield RB. The synthesis of ribonuclease A. J Biol Chem 1971; 246: 1922–1941.

    PubMed  CAS  Google Scholar 

  43. Dawson PE, Muir TW, Clark-Lewis I et al. Synthesis of proteins by native chemical ligation. Science 1994; 266: 766–779.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schwabe, C., Büllesbach, E.E. (1998). The Total Synthesis of Human Relaxin. In: Relaxin and the Fine Structure of Proteins. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12909-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12909-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12911-1

  • Online ISBN: 978-3-662-12909-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics