Skip to main content
  • 191 Accesses

Abstract

The LHC will be the first accelerator to explore directly the TeV scale. Any new energy range takes us deeper into the structure of matter, but there are good reasons to expect the TeV range to be particularly interesting, since there are several indications that it might reveal new physics. One is that we expect it to reveal the origin of particle masses, which are presumably due to the Higgs mechanism [1] but possibly with the aid of additional particles beyond the single Higgs boson of the minimal Standard Model, such as supersymmetry [2]. These seem to be required, for example, to stabilize the energy scale of the weak interactions below 1 TeV [3]. Another indication of new physics at the TeV scale may be provided by attempts to unify the fundamental gauge interactions, which fail if only Standard Model particles are included in the calculations, but work well if supersymmetric particles appear at the TeV scale [4]. Another hint of new physics at the TeV scale is provided by the astrophysical evidence for dark matter, which is naturally explained by new weakly-interacting particles weighing less than a TeV [5]. Finally, the muon anomalous magnetic moment [6] provides evanescent suggestions of new physics at the TeV scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964)

    Article  Google Scholar 

  2. J. Wess, B. Zumino, Phys. Lett. B 49, 52 (1974)

    Article  ADS  Google Scholar 

  3. L. Maiani, Proceedings of the 1979 Gif-sur-Yvette Summer School on Particle Physics, 1;G. ‘t Hooft, Recent Developments in Gauge Theories, Proceedings of the NATO Advanced Study Institute, Cargese,1979, eds. G. ‘t Hooft et al., ( Plenum Press, NY, 1980 );E. Witten, Phys. Lett. B 105, 267 (198 1)

    Google Scholar 

  4. J. Ellis, S. Kelley, D.V. Nanopoulos, Phys. Lett. B 260, 131 (1991);

    Article  ADS  Google Scholar 

  5. U. Amaldi, W. de Boer, H. Furstenau, Phys. Lett. B 260, 447 (1991);

    Article  ADS  Google Scholar 

  6. P. Langacker, M.-X. Luo, Phys. Rev. D 44, 817 (1991);

    Article  ADS  Google Scholar 

  7. C. Giunti, C.W. Kim, U.W. Lee, Mod. Phys. Lett. A 6, 1745 (1991)

    Google Scholar 

  8. J. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive, M. Srednicki, Nucl. Phys. B 238, 453 (1984)

    Article  ADS  Google Scholar 

  9. G.W. Bennett et al., Muon g–2 Collaboration, Phys. Rev. Lett. 89, 101804 (2002)

    Google Scholar 

  10. ATLAS Collaboration, http://atlas.web.cern.ch/Atlas/internal/Welcome.html

  11. CMS Collaboration, http://cmsinfo.cern.ch//Welcome.html

  12. See, for example: C.T. Hill, Phys. Lett. B 266, 419 (1991)

    Article  Google Scholar 

  13. For a review, see: E. Farhi, L. Susskind, Phys. Rept. 74, 277 (198 1)

    Google Scholar 

  14. See, for example: J. Ellis, G.L. Fogli, E. Lisi, Phys. Lett. B 343, 282 (1995)

    Google Scholar 

  15. F. Abe et al., CDF Collaboration, Phys. Rev. D 50, 2966 (1994); S. Abachi et al., Phys. Rev. Lett. 74, 2632 (1995)

    ADS  Google Scholar 

  16. LEP Electroweak Working Group, http://lepewwg.web.cern.ch/LEPEWWG/

  17. LEP Higgs Working Group, http://lephiggs.web.cern.ch//LEPHIGGS/www/Welcome.html

  18. Y. Okada, M. Yamaguchi, T. Yanagida, Prog. Theor. Phys. 85,1(1991);

    Google Scholar 

  19. J. Ellis, G. Ridolfi, F. Zwirner, Phys. Lett. B 257, 83 (1991);

    Article  ADS  Google Scholar 

  20. H.E. Haber, R. Hempfling, Phys. Rev. Lett. 66, 1815 (1991)

    Article  ADS  Google Scholar 

  21. J. Ellis, D.A. Ross, Phys. Lett. B 506, 331 (2001)

    Article  ADS  Google Scholar 

  22. C.L. Bennett et al., WMAP Collaboration, Astrophys. J. Suppl. 148, 1 (2003)

    Article  ADS  Google Scholar 

  23. J. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Phys. Lett. B 565, 176 (2003)

    Article  ADS  Google Scholar 

  24. M. Battaglia, A. De Roeck, J. Ellis, F. Gianotti, K.A. Olive, L. Pape, hep-ph/0306219

    Google Scholar 

  25. I. Hinchliffe, F.E. Paige, M.D. Shapiro, J. Soderqvist, W. Yao, Phys. Rev. D 55, 5520 (1997)

    Article  ADS  Google Scholar 

  26. M. Battaglia, A. De Roeck, J. Ellis, F. Gianotti, K.A. Matchev, K.A. Olive, L. Pape, G. Wilson, Eur. Phys. J. C 22, 535 (2001)

    Article  ADS  Google Scholar 

  27. P. Horava, E. Witten, Nucl. Phys. B 460, 506 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. I. Antoniadis, Phys. Lett. B 246, 377 (1990)

    Google Scholar 

  29. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, Phys. Lett. B 436, 257 (1998)

    Article  ADS  Google Scholar 

  30. ALICE Collaboration, http://alice.web.cern.ch/Alice/AliceNew/collaboration

  31. J. Rafelski, B. Muller, Phys. Rev. Lett. 48, 1066 (1982)

    Article  ADS  Google Scholar 

  32. T. Matsui, H. Satz, Phys. Lett. B 178, 416 (1986)

    Article  ADS  Google Scholar 

  33. See, for example: M. Ciuchini, E. Franco, A. M. siero, L. Silvestrini, Phys. Rev. D 67, 075016 (2003)

    Google Scholar 

  34. LHCb Collaboration, http://lhcb.web.cern.ch/lhcb/

  35. In addition to the above topics, elastic scattering will be explored by the TOTEM Collaboration, http://totem.web.cern.ch/Totem/

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ellis, J. (2003). Physics at the LHC. In: Cashmore, R., Maiani, L., Revol, JP. (eds) Prestigious Discoveries at CERN. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12779-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12779-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05855-4

  • Online ISBN: 978-3-662-12779-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics