Skip to main content

Interior-Point Methodology for Linear Programming: Duality, Sensitivity Analysis and Computational Aspects

  • Conference paper
Optimization in Planning and Operation of Electric Power Systems

Abstract

In this paper we use the interior point methodology to cover the main issues in linear programming-duality theory, parametric and sensitivity analysis, and algorithmic and computational aspects. The aim is to provide a global view on the subject matter.

This author completed this work under the support of research grant # 611-304-028 of NWO.

This author completed this work under the support of a research grant of SHELL.

On leave from the Eötvös University, Budapest, and partially supported by OTKA No. 2116.

This author completed this work under the support of research grant # 12-34002.92 of the Fonds National Suisse de la Recherche Scientifique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Adler and R. D. C. Monteiro (1992), A Geometric View of Parametric Linear Programming, Algoritmica 8, 161–176.

    Article  Google Scholar 

  2. I. Adler and R. D. C. Monteiro (1991), Limiting Behavior of the Affine Scaling Trajectories for Linear Programming Problems. Mathematical Programming 50, 29–51.

    Article  Google Scholar 

  3. O. Bahn, O. du Merle, J.-L. Coffin and J.-P. Vial (1993), A Cutting Plane Method from Analytic Centers for Stochastic Programming, Technical Report 1993. 5, Department of Management Studies, Faculté des SES, University of Geneva, Geneva, Switzerland.

    Google Scholar 

  4. G. B. Dantzig (1963), Linear Programming and Extensions, Princeton University Press, Princeton, NJ.

    Google Scholar 

  5. G. de Ghellinck and J.-P. Vial (1986), A Polynomial Newton Method for Linear Programming, Algorithmica 1, 425–453.

    Article  Google Scholar 

  6. I. S. Duff, A. Erisman and J. Reid (1986), Direct Methods for Sparse Matrices, Clarendon Press, Oxford, England.

    Google Scholar 

  7. A. V. Fiacco and G. P. McCormick (1968), Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley and Sons, New York, NY.

    Google Scholar 

  8. T. Gal (1986), Postoptimal Analysis, Parametric Programming and Related Topics, Mac-Graw Hill Inc., New York/Berlin.

    Google Scholar 

  9. A. George and J. Liu (1991), Computer Solution of Large Sparse Positive Definite Systems, Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  10. P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin and M. H. Wright (1986), On Projected Newton Barrier Methods for Linear Programming and an Equivalence to Karmarkar’s Projective Method, Mathematical Programming 36, 183–209.

    Article  Google Scholar 

  11. A. J. Goldman and A. W. Tucker (1956), Theory of Linear Programming, in Linear Inequalities and Related Systems (H. W. Kuhn and A. W. Tucker, eds.), Annals of Mathematical Studies, No. 38, Princeton University Press, Princeton, New Jersey, 53–97.

    Google Scholar 

  12. C. C. Gonzaga (1991), Large Step Path-Following Methods for Linear Programming, Part I: Barrier Function Method, SIAM Journal on Optimization 1, 268–279.

    Article  Google Scholar 

  13. O. Gúler, C. Roos, T. Terlaky and J.-Ph. Vial (1992), Interior Point Approach to the Theory of Linear Programming, Technical Report 1992. 3, Department of Management Studies, Faculté des SES, University of Geneva, Geneva, Switzerland.

    Google Scholar 

  14. D. den Hertog (1993), Interior Point Approach to Linear, Quadratic and Convex Programming - Algorithms and Complexity. Kluwer Publishing Comp., Dordrecht, The Netherlands (forthcoming).

    Google Scholar 

  15. B. Jansen, C. Roos and T. Terlaky (1992), An Interior Point Approach to Postoptimal and Parametric Analysis in Linear Programming, Technical Report 92–21, Faculty of Technical Mathematics and Informatics, Technical University Delft, Delft, The Netherlands.

    Google Scholar 

  16. B. Jansen, C. Roos, T. Terlaky and J.-P. Vial (1992), Primal-Dual Algorithms for Linear Programming Based on the Logarithmic Barrier Method, Technical Report 92104, Faculty of Technical Mathematics and Informatics, Technical University Delft, Delft, The Netherlands.

    Google Scholar 

  17. L. G. Khachiyan (1979), A Polynomial Algorithm in Linear Programming, Doklady Akademiia Nauk SSSR 244, 1093–1096. Translated into English in Soviet Mathematics Doklady 20, 191–194.

    Google Scholar 

  18. N. K. Karmarkar (1984), A New Polynomial-Time Algorithm for Linear Programming, Combinatorica 4, 373–395.

    Article  Google Scholar 

  19. M. Kojima, S. Mizuno and A. Yoshise (1989), A Primal-Dual Interior Point Algorithm for Linear Programming, in N. Megiddo, editor, Progress in Mathematical Programming: Interior Point and Related Methods, 29–48. Springer Verlag, New York, NY.

    Google Scholar 

  20. M. Kojima, N. Megiddo and S. Mizuno (1991), A Primal-Dual Infeasible Interior Point Algorithm for Linear Programming, Research Report RJ 8500, IBM Almaden Research Center, San Jose, CA.

    Google Scholar 

  21. M. Kojima, S. Mizuno and A. Yoshise (1991), A Little Theorem of the Big M in Interior Point Algorithms, Research Report on Information Sciences, No. B-239, Department of Information Sciences, Tokyo Institute of Technology, Tokyo, Japan.

    Google Scholar 

  22. E. Kranich (1991), Interior Point Methods for Mathematical Programming: a Bibliography, Diskussionsbeitrag Nr. 171, Fernuniversität Hagen, Germany.

    Google Scholar 

  23. J. Liu (1985), Modification of the Minimum-Degree Algorithm by Multiple Elimination, ACM Transactions on Mathematical Software 11, 141–153.

    Article  Google Scholar 

  24. I. J. Lustig (1990/91), Feasibility Issues in a Primal-Dual Interior-Point Method for Linear.Programming, Mathematical Programming 49, 145–162.

    Article  Google Scholar 

  25. I. J. Lustig, R. J. Marsten and D. F. Shanno (1991), Computational Experience with a Primal-Dual Interior-Point Method for Linear Programming, Linear Algebra and its Applications 152, 191–222.

    Article  Google Scholar 

  26. I. J. Lustig, R. J. Marsten and D. F. Shanno (1991), Interior Method VS Simplex Method: Beyond NETLIB, COAL Newsletter 19, 41–44.

    Google Scholar 

  27. I. J. Lustig, R. J. Marsten and D. F. Shanno (1992), Interior Methods for Linear Programming: Computational State of the Art, Technical Report SOR 92–17, Program in Statistics and Operations Research, Department of Civil Engineering and Operations Research, Princeton University, Princeton, NJ.

    Google Scholar 

  28. R. J. Marsten, R. Subramanian, M. Saltzman, I. J. Lustig and D. F. Shanno (1990), Interior Point Methods for Linear Programming: Just Call Newton, Lagrange, and Fiacco and McCormick! Interfaces 20, 105–116.

    Article  Google Scholar 

  29. L. McLinden (1980), The Complementarity Problem for Maximal Monotone Multifunctions, in R. W. Cottle, F. Giannessi and J. L. Lions, editors, Variational Inequalities and Complementarity Problems, 251–270, John Wiley and Sons, New York.

    Google Scholar 

  30. L. McLinden (1980), An Analogue of Moreau’s Proximation Theorem With Application to the Nonlinear Complementarity Problem, Pacific Journal of Mathematics 88, 101–161.

    Article  Google Scholar 

  31. K. A. McShane, C. L. Monma and D. F. Shanno (1989), An Implementation of a Primal-Dual Interior Point Method for Linear Programming, ORSA Journal on Computing 1, 70–83.

    Article  Google Scholar 

  32. N. Megiddo (1989), Pathways to the Optimal set in Linear Programming, in N. Megiddo (editor), Progress in Mathematical programming: Interior Point and Related Methods, 131–158. Springer Verlag, New York.

    Google Scholar 

  33. N. Megiddo (1991), On Finding Primal-and Dual-Optimal Bases, ORSA Journal on Computing 3, 63–65.

    Article  Google Scholar 

  34. S. Mehrotra (1992), On the Implementation of a (Primal-Dual) Interior Point Method, SIAM Journal on Optimization 2, 575–601.

    Article  Google Scholar 

  35. S. Mizuno (1992), Polynomiality of Kojima-Megiddo-Mizuno Infeasible Interior Point Algorithm for Linear Programming, Technical Report 1006, School of Operations Research and Industrial Engineering, Cornell University, Ithaca NY.

    Google Scholar 

  36. C. Moler, J. Little and S. Bangert (1987), PRO-MATLAB user’s guide, The Math-Works, Inc., Sherborne MA, USA.

    Google Scholar 

  37. R. D. C. Monteiro and I. Adler (1989), Interior Path Following Primal-Dual Algorithms. Part I: Linear Programming, Mathematical Programming 44, 27–42.

    Article  Google Scholar 

  38. Y. Nesterov and A. Nemirovskii (1990), Self-Concordant Functions and Polynomial-Time Methods in Convex Programming, USSR Academy of Sciences, Moscow.

    Google Scholar 

  39. C. H. Papadimitriou and K. Steiglitz (1982), Combinatorial Optimization: Algorithms and Complexity, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  40. F. A. Potra (1992), An Infeasible Interior-Point Predictor-Corrector Algorithm for Linear Programming, Technical Report 26, Department of Mathematics, University of Iowa, Iowa City IA, USA.

    Google Scholar 

  41. J. Renegar (1988), A Polynomial-Time Algorithm Based on Newton’s Method for Linear Programming, Mathematical Programming 40, 59–94.

    Article  Google Scholar 

  42. C. Roos and J.-Ph. Vial (1990), Long Steps with the Logarithmic Penalty Barrier Function, in Economic Decision-Making: Games, Economics and Optimization ( dedicated to Jacques H. Drèze ), edited by J. Gabszevwicz, J. -F. Richard and L. Wolsey, Elsevier Science Publisher B.V., 433–441.

    Google Scholar 

  43. Gy. Sonnevend (1985), An “Analytical Centre” for Polyhedrons and New Classes of Global Algorithms for Linear (Smooth Convex) Programming. In A. Prékopa, J. Szelersân and B. Strazicky, eds. System Modelling and Optimization: Proceedings of the 12th IFIP-Conference, Budapest, Hungary, September 1985, Vol. 84. of Lecture Notes in Control and Information Sciences, Springer Verlag, Berlin, 866–876.

    Google Scholar 

  44. J.-Ph. Vial (1992), Computational Experience with a Primal-Dual Interior-Point Algorithm for Smooth Convex Programming, Technical Report, Department of Management Studies, Department of SES, University of Geneva, Switzerland.

    Google Scholar 

  45. Y. Zhang (1992), On the Convergence of an Infeasible Interior-Point Algorithm for Linear Programming and Other Problems, Technical Report, Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jansen, B., Roos, C., Terlaky, T., Vial, JP. (1993). Interior-Point Methodology for Linear Programming: Duality, Sensitivity Analysis and Computational Aspects. In: Frauendorfer, K., Glavitsch, H., Bacher, R. (eds) Optimization in Planning and Operation of Electric Power Systems. Physica, Heidelberg. https://doi.org/10.1007/978-3-662-12646-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12646-2_3

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-0718-9

  • Online ISBN: 978-3-662-12646-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics