Abstract
‘Smooth’ methods have been developed and used because under the assumption of smoothness it is possible to use the methods of differential calculus. For example, there are a great number of methods for solving convex optimization problems in which both the minimized objective and the set of feasible points can be expressed with the aid of differentiable convex functions. In some cases, however, the problems connected with the calculation of gradients have led to the development of algorithms which do not use derivatives. (Nevertheless, differentiability is still necessary to prove optimality, convergence assertions, etc.) The most successful optimization method — the well-known simplex method of linear programming — does not use derivatives. On the other hand, there are methods which make partial use of gradients, linearization etc., but which do not depend on differentiability assertions to prove their convergence.
Keywords
- Feasible Point
- Differential Calculus
- Solve Optimization Problem
- Polyhedral Cone
- Independent Point
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Huard, P.: Programmation mathematique convexe, RIRO 2 (1968) 7, pp. 43–59.
Lommatzsch, K.: Ein Gradienten-und Schwerpunktverfahren der linearen und nichtlinearen Optimierung, Aplikace Mat. 11 (1966), pp. 303–343.
N.V. Thoai, H. Puy: Convergent Algorithms for Minimizing a Concave Function, Math. of O.R 5 (1980), pp. 556–566.
N.V. Thoai: Verfahren zur Lösung kô.nkaver Optimierungsaufgaben auf der Basis eines verallgemeinerten Erweiterungsprinzips, Diss. (B ), Humboldt-Universität Berlin, 1984.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1985 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lommatzsch, K., Van Thoai, N. (1985). On Methods for Solving Optimization Problems without Using Derivatives. In: Demyanov, V.F., Pallaschke, D. (eds) Nondifferentiable Optimization: Motivations and Applications. Lecture Notes in Economics and Mathematical Systems, vol 255. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12603-5_21
Download citation
DOI: https://doi.org/10.1007/978-3-662-12603-5_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-15979-7
Online ISBN: 978-3-662-12603-5
eBook Packages: Springer Book Archive