Advertisement

Der kardiopulmonale Bypass

  • H. Metzler

Zusammenfassung

Mit Beginn des kardiopulmonalen Bypasses (CPB) werden die Pumpfunktion des Herzens und die Ventilations-/Oxygenierungsfunktion der Lungen vollständig oder partiell von der Herz-Lungen-Maschine (HLM) übernommen. Damit wird auch die Verantwortung für die korrekte Steuerung und Kontrolle in hohem Maße dem Kardiotechniker übertragen. Für den Anästhesisten erlischt zu diesem Zeitpunkt keineswegs seine Verpflichtung, wichtige Organ-und Systemfunktionen weiter zu überwachen. Vielmehr wird diese Phase von der integrativen Interaktion zwischen dem Kardiotechniker, Operateur und Anästhesisten geprägt, wobei dem Anästhesisten sehr oft die Aufgabe zufällt, die einzelnen Organfunktionen abzuchecken, den Gesamtüberblick zu wahren, koordinativ zu wirken und den reibungslosen Übergang von Bypass-beginn und Bypassende zu steuern.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Arom KV, Cohen DE, Strobl FT (1989) Effect of intraoperative intervention on neurological outcome based on electroencephalographic monitoring during cardiopulmonary bypass. Ann Thorac Surg 48: 476–483PubMedCrossRefGoogle Scholar
  2. 2.
    Baraka A (1992) Continuous blood gas monitoring should be a standard during cardiopulmonary bypass. Pro: Continuous venous oximetry should be used routinely during cardiopulmonary bypass. J Cardiothorac Vasc Anesth 6: 105–108PubMedCrossRefGoogle Scholar
  3. 3.
    Bashein G, Nessly ML, Bledsoe SW, Townes BD, Davis KB, Coppel DB, Hornbein TF (1992) Electroencephalography during surgery with cardiopulmonary bypass and hypothermia. Anesthesiology 76: 878–891PubMedCrossRefGoogle Scholar
  4. 4.
    Bazaral MG, Welch M, Golding LA, Badhwar K (1990) Comparison of brachial and radial arterial pressure monitoring in patients undergoing coronary artery bypass surgery. Anesthesiology 73: 38–45PubMedCrossRefGoogle Scholar
  5. 5.
    Bone ME, Feneck RO (1988) Bladder temperature as an estimate of body temperature during cardiopulmonary bypass. Anaesthesia 43: 181–185PubMedCrossRefGoogle Scholar
  6. 6.
    Burrows FA (1993) Transcranial doppler monitoring of cerebral perfusion during cardiopulmonary bypass. Ann Thorac Surg 56: 1482–1484PubMedCrossRefGoogle Scholar
  7. 7.
    Burrows FA, Bissonnette B (1993) Monitoring the adequacy of cerebral perfusion during cardiopulmonary bypass in children using transcranial doppler technology. J Neurosurg Anesthesiol 5: 209–212PubMedGoogle Scholar
  8. 8.
    Burrows FA, Hilier SC, McLeod ME, Iron KS, Taylor MJ (1990) Anterior fontanel pressure and visual evoked potentials in neonates and infants undergoing profound hypothermic circulatory arrest. Anesthesiology 73: 632–636PubMedCrossRefGoogle Scholar
  9. 9.
    Burrows FA, Volgyesi GA, James PD (1989) Clinical evaluation of the augmented delta quotient monitor for intraoperative electroencephalographic monitoring of children during surgery and cardiopulmonary bypass for repair of congenital cardiac defects. Br J Anaesth 63: 565–573PubMedCrossRefGoogle Scholar
  10. 10.
    Coles JG, Taylor MJ, Pearce JM, Lowry NJ, Stewart DJ, Trusler GA, Williams WG (1984) Cerebral monitoring of somatosensory evoked potentials during profoundly hypothermic circulatory arrest. Circulation 70: 96–102Google Scholar
  11. 11.
    Comparesi EM, Moon RE (1988) Blood gas values should be corrected for body temperature during hypotermia. In: Fyman P, Gotta AW (eds) Controversies in cardiovascular anesthesia. Kluwer, Boston Dordrecht London, pp 35–54CrossRefGoogle Scholar
  12. 12.
    Davis RF, Dobbs JL, Casson H (1993) Conduct and Monitoring of cardiopulmonary bypass. In: Gravlee GP, Davis RF, Utley JR (eds) Cardiopulmonary bypass. Principles and practice. Williams and Wilkins, Baltimore Philadelphia Hong Kong, pp 578–602Google Scholar
  13. 13.
    Dolman J, Silvay G, Zappulla R, Toth C, Erickson N, Mindich BP, Kaplan JA (1986) The effect of temperature, mean arterial pressure and cardiopulmonary bypass flows on somatosensory evoked potential latency in man. Thorac Cardiovasc Surg 34: 217–222PubMedCrossRefGoogle Scholar
  14. 14.
    Edmonds HL (1994) Pro: Central nervous system (CNS) monitoring is desirable during cardiopulmonary bypass (CPB). Soc Cardiovasc Anesth, 16th Annu Meet, pp 114–116Google Scholar
  15. 15.
    Edmonds HL Jr, Griffiths LK, Van der Laken J, Slater AD, Shields CB (1992) Quantitative electroencephalographic monitoring during myocardial revascularization predicts postoperative disorientation and improves outcome. J Thorac Cardiovasc Surg 103: 555–563PubMedGoogle Scholar
  16. 16.
    Engelhardt W (1994) Neurophysiologisches Monitoring bei kardiochirurgischen Eingriffen. In: Rügheimer E, Dinkel M (Hrsg) Neuromonitoring in Anästhesie and Intensivmedizin. Springer, Berlin Heidelberg New York, S 201–207CrossRefGoogle Scholar
  17. 17.
    Fallon P, Roberts I, Kirkham FJ, Elliot MJ, Lloyd Thomas A, Maynard R, Edwards AD (1993) Cerebral hemodynamics during cardiopulmonary bypass in children using near-infrared spectroscopy. Ann Thorac Surg 56: 1473–1477PubMedCrossRefGoogle Scholar
  18. 18.
    Ferguson TB Jr, Smith PK, Buhman WC, Lofland GK, Cox JL (1983) Monitoring of the electrical status of the ventricle during cardioplegic arrest. Circulation 68: 1127–1133CrossRefGoogle Scholar
  19. 19.
    Goldiner PL, Oka Y, Svadjian E (1988) Blood gases should not be temperature corrected during hypothermia. In: Fyman P, Gotta AW (eds) Controversies in cardiovascular anesthesia. Kluwer, Boston Dordrecht London, pp 55–82CrossRefGoogle Scholar
  20. 20.
    Gravlee GP, Haddon WS, Rothberger HK, Mills SA, Rogers AT, Bean VE, Buss DH, Prough DS, Cordell Ar (1990) Heparin dosing and monitoring for cardiopulmonary bypass. A comparison of techniques with measurement of subclinical plasma coagulation. J Thorac Cardiovasc Surg 99: 518–527Google Scholar
  21. 21.
    Greeley WJ, Kern FH, Meliones J, Ungerleider RM (1993) Effect of deep hypothermia and circulatory arrest on cerebral blood flow and metabolism. Ann Thorac Surg 56: 1464–1466PubMedCrossRefGoogle Scholar
  22. 22.
    Grote CL, Shanahan PT, Salmon P, Meyer RG, Barrett C, Lansing A (1992) Cognitive outcome after cardiac operations. Relationship to intraoperative computerized electroencephalographic data. J Thorac Cardiovasc Surg 104: 1405–1409Google Scholar
  23. 23.
    Hickey RB, Hansen DD (1989) Temperature and blood gases: The clinical dilemma of acid-base management for hypothermic cardiopulmonary bypass. In: Tinker JH (ed) Cardiopulmonary bypass: current concepts and controversies. Saunders, Philadelphia, pp 1–20Google Scholar
  24. 24.
    Hindman BJ, Lillehaug SI, Tinker JH (1993) Cardiopulmonary bypass and the anesthesiologist. Kaplan 919–950Google Scholar
  25. 25.
    Horkay F, Martin P, Rajah SM, Walker DR (1992) Response to heparinization in adults and children undergoing cardiac operations. Ann Thorac Surg 53: 822–826PubMedCrossRefGoogle Scholar
  26. 26.
    Hunt BJ, Segal H, Yacoub M (1992) Aprotinin and heaparin monitoring during cardiopulmonary bypass. Circulation 86: 11410–11412Google Scholar
  27. 27.
    Huyzen RJ, Harder MP, Gallandat Huet RCG, Boonstra PW, Njo TL, Brenken U, Van Oeveren W (1994) Alternative perioperative anticoagulation monitoring during cardiopulmonary bypass in aprotinin-treated patients. J Cardiothorac Vasc Anesth 2: 153–156CrossRefGoogle Scholar
  28. 28.
    Kern FH, Jonas RA, Mayer JE Jr, Hanley FL, Casteneda AR, Hickey PR (1992) Temperature monitoring during CPB in infants: does it predict efficient brain cooling? Ann Thorac Surg 54: 749–754PubMedCrossRefGoogle Scholar
  29. 29.
    Kern FH, Schell RM, Greeley WJ (1993) Cerebral monitoring during cardiopulmonary bypass in children. J Neurosurg Anaesthesiol 5: 213–217Google Scholar
  30. 30.
    Kirklin JW (1993) Hypothermia, circulatory arrest and cardiopulmonary bypass. In: Kirklin JW, Barrat-Boyes BG (eds) Cardiac surgery: Morphology, diagnostic criteria, natural history, techniques, results and indications, 2nd edn. Churchill Livingstone, New York Edinburgh London, pp 60–127Google Scholar
  31. 31.
    Kirson LE, Goldman JM (1994) A system for monitoring the delivery of ventilating gas to the oxygenator during cardiopulmonary bypass. J Cardiothorac Vasc Anesth 1: 51–57CrossRefGoogle Scholar
  32. 32.
    Kopriva CJ (1988) The activated coagulation time (ACT). In: Ellison N, lobes DR (eds) Effective hemostasis in cardiac surgery. SCA-Monograph. Saunders, Philadelphia London Toronto, pp 155–161Google Scholar
  33. 33.
    Levy WJ (1994) Con: Central nervous system monitoring is not desirable during cardiopulmonary bypass. Soc Cardiovasc Anesth, 16th Annu Meet, pp 117–120Google Scholar
  34. 34.
    Lin CY (1989) Con: the EEG should not be monitored during cardiopulmonary bypass. J Cardiothorac Anesth 3: 124–126PubMedCrossRefGoogle Scholar
  35. 35.
    Mark JB, FitzGerald D, Fenton T, Fosberg AM, Camann W, Maffeo N, Winkelman J (1991) Continuous arterial and venous blood gas monitoring during cardiopulmonary bypass. J Thorac Cardiovasc Surg 102: 321–439Google Scholar
  36. 36.
    Markand ON, Warren C, Mallik GS, Kind RD, Brown JW, Mahomed Y (1990) Effects of hypothermia on short latency somatosensory evoked potentials in humans. Electroencephalogr Clin Neurophysiol 77: 416–424PubMedCrossRefGoogle Scholar
  37. 37.
    Merium RG (1992) Con: Continuous blood gas monitoring should not be a standard during cardiopulmonary bypass. J Cardiothorac Vasc Anesth 6: 109–110CrossRefGoogle Scholar
  38. 38.
    Nakajima T, Kuro M, Hayashi Y, Kitaguchi K, Uchida 0, Takaki 0 (1992) Clinical evaluation of cerebral oxygen balance during cardiopulmonary bypass: on-line continuous monitoring of jugular venous oxyhemoglobin saturation. Anesth Analg 74: 630–635PubMedCrossRefGoogle Scholar
  39. 39.
    Nakajima T, Ohsumi H, Kuro M (1993) Accuracy of continuous jugular bulb venous oximetry during cardiopulmonary bypass. Anaesth Analg 77: 1111–1115CrossRefGoogle Scholar
  40. 40.
    Oka Y, Inoue T, Hong Y, Sisto DA, Strom JA, Frater RW (1986) Retained intracardiac air. Transesophageal echocardiography for definition of incidence and monitoring removal by improved techniques. J Thorac Cardiovasc Surg 91: 329–338Google Scholar
  41. 41.
    Padayachee TS, Parsons S, Theobold R, Linley J, Gosling RG, Deverall PB (1987) The detection of microemboli in the middle cerebral artery during cardiopulmonary bypass: a transcranial doppler ultrasound investigation using membrane and bubble oxygenators. Ann Thorac Surg 44: 298–302PubMedCrossRefGoogle Scholar
  42. 42.
    Rahn H, Reeves RB, Howell BJ (1975) Hydrogen ion regulation, temperature and evolution. Am Rev Respir Dis 112: 1219–1264Google Scholar
  43. 43.
    Reves JG, Govier A, Croughwell N (1988) Low pressure during cardiopulmonary bypass is preferable. In: Fyman P, Gotta AW (eds) Controversies in cardiovascular anesthesia. Kluwer, Boston Dordrecht London, pp 99–114CrossRefGoogle Scholar
  44. 44.
    Roberts I, Fallon P, Kirkham FJ, Lloyd Thomas A, Cooper C, Maynard R, Elliot M, Edwards AD (1993) Estimation of cerebral blood flow with near infrared spectroscopy and indocyanine grenn. Lancet 342: 1425PubMedCrossRefGoogle Scholar
  45. 45.
    Shevde K, Mylavarapu S (1988) High pump flows and pressure are desirable during cardiopulmonary bypass: In: Fyman P, Gotta AW (eds) Controversies in cardiovascular anesthesia. Kluwer, Boston Dordrecht London, pp 83–98Google Scholar
  46. 46.
    Sladen RN, Berend JZ, Sessler DI (1994) Rewarming and sweating during cardiopulmonary bypass. J Cardiothorac Vasc Anesth 1: 45–50CrossRefGoogle Scholar
  47. 47.
    Swan H, Sanchez M, Tyndall M, Koch C (1990) Quality control of perfusion: monitoring venous blood oxygen tension to prevent hypoxic acidosis. J Thorac Cardiovasc Surg 99: 868–872PubMedGoogle Scholar
  48. 48.
    Van der Linden J, Casimir Ahn H (1991) When do cerebral emboli appear during open heart operations? A transcranial doppler study. Ann Thorac Surg 51: 237–241PubMedCrossRefGoogle Scholar
  49. 49.
    VanBeck JO, White RD, Abenstein JP, Mullany CJ, Orszulak TA (1993) Comparison of axillary artery or brachial artery with aortic pressure after cardiopulmonary bypass using a long radial artery catheter. J Cardiothorac Vasc Anesth 7: 312–315PubMedCrossRefGoogle Scholar
  50. 50.
    Wang JS, Lin CY, Hung WT, Karp RB (1992) Monitoring of heparin-induced anticoagulation with kaolin-activated clotting time in cardiac surgical patients treated with oprotinin. Anesthesiology 77: 1080–1084PubMedCrossRefGoogle Scholar
  51. 51.
    Wilson GJ, Rebeyka IM, Coles JG, Desrosiers AJ, Dasmahapatra HK, Adler S, Feitler DA, Sherret H, Kielmanowicz S, Ikonomidis J (et al) (1988) Loss of the somatosensory evoked response as an indicator of reversible cerebral ischemia during hypothermic, low-flow cardiopulmonary bypass. Ann Thorac Surg 45: 206–209CrossRefGoogle Scholar
  52. 52.
    Yamakage M, Kawana S, Watanabe H, Namiki A (1993) The utility of tracheal temperature monitoring. Anesth Analg 76: 795–799PubMedGoogle Scholar
  53. 53.
    Zia M, Davies FW, Alston RP (1992) Oxygenator exhaust capnography: A method of estimating arterial carbon dioxide tension during cardiopulmonary bypass. J Cardiothorac Vasc Anesth 6: 42–45PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • H. Metzler

There are no affiliations available

Personalised recommendations