Advertisement

Projective Algorithms

  • Manfred Padberg
Part of the Algorithms and Combinatorics book series (AC, volume 12)

Abstract

If the above quotation is Greek to you, you are quite right. In any case, counting the letters in each word separately you get 3.14159... which is a start on the number Pi (π) that was found in a sandbox of the Mediterranean well over 2,000 years ago and which got you all excited about mathematics in grade school already. And, of course, “God the Almighty always does geometry” is what it freely translates to.

Keywords

Basic Algorithm Projective Algorithm Projective Transformation Cross Ratio Optimal Objective Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckmann, P. [ 1971 ] A History of 7 (Pi), The Golem Press, New York.Google Scholar
  2. Courant, R. and H. Robbins [ 1978 ] What is Mathematics, Oxford University Press, New York.zbMATHGoogle Scholar
  3. Karmarkar, N. [ 1984 ] “A new polynomial time algorithm for linear programming”, Combinatorica 4 373–395.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Sperner, E. [ 1951 ] Einführung in die Analytische Geometrie und Algebra, Zweiter Teil, Vandenhoeck, Rupprecht, Göttingen.Google Scholar
  5. Karmarkar, N. [ 1984 ] “A new polynomial time algorithm for linear programming”, Combinatorica 4 373–395.MathSciNetzbMATHCrossRefGoogle Scholar
  6. Padberg, M. [ 1986 ] “A different convergence proof of the projective method for linear programming”, Operations Research Letters 4 253–257.MathSciNetzbMATHCrossRefGoogle Scholar
  7. Goldfarb, D. and D. Xiao [1991] “A primal projective interior point method for linear programming”, Mathematical Programming 51 17–43.Google Scholar
  8. Goldfarb, D. and D. Xiao [ 1991 ] “On the complexity of a class of projective interior point methods”, Manuscript, Columbia University, submitted to Mathematics of Operations Research.Google Scholar
  9. Padberg, M. [ 1985 ] “Solution of a nonlinear programming problem arising in the projective method for linear programming”, Manuscript, New York University, New York.Google Scholar
  10. D. Shaw (Xiao) and D. Goldfarb [ 1991 ] “A path following projective interior point method for linear programming”, Manuscript, Columbia University, New York, to appear in SIAM Journal on Optimization.Google Scholar
  11. Courant, R. and H. Robbins [ 1978 ] What is Mathematics, Oxford University Press, New York.zbMATHGoogle Scholar
  12. Klein, F. [1928] Vorlesungen über nicht-euklidische Geometrie,reproduction by Chelsea Publishing Company, New York.Google Scholar
  13. Sperner, E. [ 1951 ] Einführung in die Analytische Geometrie und Algebra, Zweiter Teil, Vandenhoeck, Rupprecht, Göttingen.Google Scholar
  14. Anstreicher, K. [ 1986 ] “A monotonic projective algorithm for fractional linear programming”, Algorithmica 1 483–498.MathSciNetzbMATHCrossRefGoogle Scholar
  15. D. Shaw (Xiao) and D. Goldfarb [ 1991 ] “A path following projective interior point method for linear programming”, Manuscript, Columbia University, New York, to appear in SIAM Journal on Optimization.Google Scholar
  16. Anonymous [ 1972 ] “A new algorithm for optimization”, Mathematical Programming 3 124–128.MathSciNetzbMATHCrossRefGoogle Scholar
  17. Bayer, D.A. and J.C. Lagarias [ 1991 ] “Karmarkar’s linear programming algorithm and Newton’s method”, Mathematical Programming 50 291–330.MathSciNetzbMATHCrossRefGoogle Scholar
  18. Fiacco, A.V. and G.P. McCormick [ 1968 ] Nonlinear Programming: Sequential Unconstrained Minimization Techniques Wiley, Sons, New York; republished 1990, SIAM, Philadelphia.Google Scholar
  19. Huard, P. [ 1967 ] “Resolution of mathematical programming with nonlinear constraints by the method of centres” in: J. Abadie (ed) Nonlinear Programming, North-Holland, Amsterdam, 209–219.Google Scholar
  20. Megiddo, N. [ 1989 ] “Pathways to the optimal set in linear programming”, in N. Megiddo (ed) Progress in Mathematical Programming: Interior Point Algorithms and Related Methods, Springer Verlag, New York, 131–158.Google Scholar
  21. Mityagin, B.S. [ 1969 ] “Two inequalities for volumes of convex bodies”, Math. Notes Acad. Science USSR 5 61–65.CrossRefGoogle Scholar
  22. Monteiro, R.D.C. and I. Adler [ 1989 ] “Interior path following primal-dual algorithms. Part I: Linear programming”, Mathematical Programming 44 27–41.MathSciNetzbMATHCrossRefGoogle Scholar
  23. Vanderbei, R.J. [ 1993 ] “ALPO: Another linear programming optimizer”, ORSA Journal on Computing 5 134–146.MathSciNetzbMATHCrossRefGoogle Scholar
  24. Witzgall, C., Boggs, P.T. and P.D. Domich [ 1990 ] “On the convergence behavior of trajectories for linear programming”, Contemporary Mathematics 114 161–187.MathSciNetCrossRefGoogle Scholar
  25. Adler, I., N. Karmarkar, M. Resende and C. Veiga [ 1989 ] “Data structures and programming techniques for the implementation of Karmarkar’s algorithm”, ORSA Journal on Computing 1 84–106.zbMATHCrossRefGoogle Scholar
  26. Barnes, E.R. [ 1986 ] “A variation on Karmarkar’s algorithm for solving linear programming problems”, Mathematical Programming 36 174–182.MathSciNetzbMATHCrossRefGoogle Scholar
  27. Dikin, I.I. [ 1967 ] “Iterative solution of problems of linear and quadratic programming”, Soviet Mathematics Doklady 8 674–675.zbMATHGoogle Scholar
  28. Fiacco, A.V. and G.P. McCormick [ 1968 ] Nonlinear Programming: Sequential Unconstrained Minimization Techniques, Wiley and Sons, New York; republished 1990, SIAM, Philadelphia.Google Scholar
  29. Goldfarb, D. and S. Mehrotra [ 1989 ] “A self-correcting version of Karmarkar’s algorithm”, SIAM Journal on Numerical Analysis 26 1006–1015.MathSciNetzbMATHCrossRefGoogle Scholar
  30. de Ghellinck, G. and J-P Vial [ 1986 ] “A polynomial Newton method for linear programming”, Algorithmica 1 425–453.MathSciNetzbMATHCrossRefGoogle Scholar
  31. Gonzaga, C. [ 1989 ] “An algorithm for solving linear programming in O(n 3 L) operations”, in N. Megiddo (ed) Progress in Mathematical Programming-Interior Point and Related Methods, Springer-Verlag, Berlin 1–28.CrossRefGoogle Scholar
  32. Hooker, J.N. [ 1986 ] “Karmarkar’s linear programming algorithm”, Interfaces 16 75–90.CrossRefGoogle Scholar
  33. Iri, M. and H. Imai [ 1986 ] “A multiplicative barrier function method for linear programming”, Algorithmica 1 455–482.MathSciNetzbMATHCrossRefGoogle Scholar
  34. Marsten, R., R. Subramanian, I. Lustig and D. Shanno [ 1990 ] “Interior point methods for linear programming: Just call Newton, Lagrange, and Fiacco and McCormick!”, Interfaces 20 105–116.CrossRefGoogle Scholar
  35. McShane, K.A., C.L. Monma and D. Shanno [ 1989 ] “An implementation of a primal-dual interior point method for linear programming”, ORSA Journal on Computing, 1 70–83.zbMATHCrossRefGoogle Scholar
  36. Megiddo, N. [ 1989 ] (ed) Progress in Mathematical Programming, Springer Verlag, Berlin.Google Scholar
  37. Renegar, J. [ 1988 ] “A polynomial-time algorithm, based on Newton’s method, for linear programming”, Mathematical Programming 40 59–93.MathSciNetzbMATHCrossRefGoogle Scholar
  38. Todd, M.J. and Burell, B.P. [ 1986 ] “An extension of Karmarkar’s algorithm for linear programming using dual variables”, Algorithmica 1 409–424.MathSciNetzbMATHCrossRefGoogle Scholar
  39. Vanderbei, R.J., M.S. Meketon and B.A. Freedman [ 1986 ] “A modification of Karmarkar’s linear programming algorithm”, Algorithmica 4 395–407.MathSciNetCrossRefGoogle Scholar
  40. Lustig, I.J., R.E. Marsten and D.F. Shanno [ 1994 ] “Interior point methods for linear programming: computational state of the art”, ORSA Journal on Computing 6 1–14.MathSciNetzbMATHCrossRefGoogle Scholar
  41. Kranich, E. [ 1993 ] “Interior point methods for mathematical programming: A bibliography”, Universität Wuppertal, Germany.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Manfred Padberg
    • 1
  1. 1.Leonard N. Stern School of Business, Statistics and Operations Research DepartmentNew York UniversityNew York CityUSA

Personalised recommendations