Analytical Geometry

  • Manfred Padberg
Part of the Algorithms and Combinatorics book series (AC, volume 12)


In its abbreviated form АГЕΩΜΤΡΗΤΟΣ ΜΗ ΕΙΣΙΤΩ Plato’s dictum — in capital Greek letters, of course — was chiseled into the portal to the Athenean Academy and you find it today in the seal of the American Mathematical Society. Have you ever thought about what academy means? Probably not; but you are in academe and so here is the story. While Socrates (c. 470–399 B.C.) taught like so many before him in public — on the Athenean marketplace or ’Aγορά — Plato founded the Academy near Athens around 387 B.C. The word academy or ’ Aϰαδημία comes from its location in the grove of Academos so named after a mythological Attic hero.


Extreme Point Minimal Generator Analytical Geometry Lineality Space Polyhedral Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alevras, D. and M.P Rijal [ 1993 ] “The convex hull of a linear congruence relation in zero-one variables”, to appear in ZOR-Mathematical Methods of Operations Research 41.Google Scholar
  2. Balas, E. and W. Pulleyblank [ 1983 ] “The perfectly matchable polytope of a bipartite graph”, Networks 13 495–516.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Bareiss, E.H. [ 1968 ] “Sylvester’s identity and multistep integer-preserving Gaussian elimination”, Mathematics of Computation 22 565–578.MathSciNetzbMATHGoogle Scholar
  4. Burger, E. [ 1956 ] “Über homogene lineare Ungleichungssysteme”, Zeitschrift für Angewandte Mathematik und Mechanik 36 135–139.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Carathéodory, C. [ 1911 ] “Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen”, Rendiconti del Circolo Mathematic() di Palermo 32 193–217.zbMATHCrossRefGoogle Scholar
  6. Carathéodory, C. [ 1935 ] Variationsrechnung und partielle Differentialgleichungen erster Ordnung, Teubner, Leipzig/Berlin.Google Scholar
  7. Descartes, R. [ 1637 ] La Géometrie, republished as The geometry of René Descartes, D.S. Smith and M.L. Latham (transltrs.), Dover Publications, New York, 1954.Google Scholar
  8. Erwe, F. [ 1964 ] Differential-und Integralrechnung I, I I, Bibliographisches Institut, Mannheim.Google Scholar
  9. Gale, D. [ 1951 ] “Convex polyhedral cones and linear inequalities”, in Koopmans T. (ed) Activity Analysis of Production and Allocation, Wiley, New York, 287–297.Google Scholar
  10. Gantmacher, F.R. [1958] Matrizenrechnung, Teil I und Teil //VEB Deutscher Verlag der Wissenschaften, Berlin. [German translation of the Russian original dated 1954.]Google Scholar
  11. Gerstenhaber, M. [ 1951 ] “Theory of convex polyhedral cones”, in Koopmans T. (ed) Activity Analysis of Production and Allocation, Wiley, New York, 298–316.Google Scholar
  12. Goldman, A.J. [ 1956 ] “Resolution and separation theorems for polyhedral convex sets” in Kuhn and Tucker (eds), Linear Inequalities and Related Systems, Princeton U. Press, Princeton, 41–51.Google Scholar
  13. Goldman, A.J. and A.W. Tucker [ 1956 ] “Theory of linear programming”, in Kuhn and Tucker (eds), Linear Inequalities and Related Systems, Princeton U. Press, Princeton, 53–97.Google Scholar
  14. Golub, G.H. and C.F.Van Loan [ 1983 ] Matrix Computations, The Johns Hopkins University Press, Baltimore.zbMATHGoogle Scholar
  15. Grötschel, M., L. Lovâsz and A. Schrijver [ 1988 ] Geometric Algorithms and Combinatorial Optimization, Springer-Verlag, Berlin.zbMATHCrossRefGoogle Scholar
  16. Grötschel, M. and M. Padberg [ 1985 ] “Polyhedral theory”, in Lawler, E. et al (eds) The Traveling Salesman Problem, Wiley, New York, Chapter 8.Google Scholar
  17. Grünbaum, B. [ 1967 ] Convex Polytopes, Wiley, London.zbMATHGoogle Scholar
  18. Kuhn, H.W. and A.W.Tucker (eds) [ 1956 ] Linear Inequalities and Related Systems, Annals of Mathematics Studies 38, Princeton U. Press, Princeton.Google Scholar
  19. Luther, H.A. and L.F. Guseman, Jr. [ 1962 ] “A finite sequentially compact process for the adjoints of matrices over arbitrary integral domains”, Comm. ACM 5 447–448.MathSciNetzbMATHCrossRefGoogle Scholar
  20. Markowitz, H.M. [ 1957 ] “The elimination form of the inverse and its application to linear programming” Management Science 3 255–269.MathSciNetzbMATHCrossRefGoogle Scholar
  21. McClellan, M.T. [ 1973 ] “The exact solution of systems of linear equations with polynomial coefficients”, J. ACM 20 563–588.MathSciNetzbMATHCrossRefGoogle Scholar
  22. McMullen, P. and G.C. Shephard [ 1971 ] Convex polytopes and the upper bound conjecture, London Math.Soc. Lecture Notes Series 3, Cambridge University Press, London.Google Scholar
  23. Minkowski, H. [1896] Geometrie der Zahlen (Erste Lieferung) Teubner, Leipzig.Google Scholar
  24. Minkowski, H. [ 1897 ] “Allgemeine Lehrsätze über die konvexen Polyheder”, Nachrichten von der königlichen Gesellschaft der Wissenschaften zu Göttingen, math.physik. Klasse 198–219Google Scholar
  25. Motzkin, T.S., H. Raiffa, G.L. Thompson and R.M. Thrall [ 1953 ] “The double description method” in Kuhn, H.W. and A.W. Tucker (eds) Contributions to the Theory of Games Vol. II, Princeton University Press, Princeton, 51 — 73.Google Scholar
  26. Nemhauser, G.L. and L.A. Wolsey [ 1988 ] Integer and Combinatorial Optimization, Wiley, New York.zbMATHGoogle Scholar
  27. Padberg, M. and M.R. Rao [1980–1981] “The Russian method for linear inequalities, Parts I, II and III”, Preprints, New York University.Google Scholar
  28. Padberg, M. and Ting-Yi Sung [ 1991 ] “An analytical comparison of different formulations of the travelling salesman problem”, Mathematical Programming 52 315–357.MathSciNetzbMATHCrossRefGoogle Scholar
  29. Rockafellar, T. [ 1970 ] Convex Analysis, Princeton University Press, Princeton.zbMATHGoogle Scholar
  30. Schrijver, A. [ 1986 ] Theory of Linear and Integer Programming, Wiley, Chichester.zbMATHGoogle Scholar
  31. Simmonnard, M. [ 1966 ] Linear Programming, Prentice-Hall, Englewood Cliffs.Google Scholar
  32. Stoer, J. and C. Witzgall [ 1970 ] Convexity and Optimization in Finite Dimensions I, Springer, Berlin.CrossRefGoogle Scholar
  33. Tietz, H. [ 1962 ] Vorlesung über Analytische Geometrie, Aschendorffsche Verlagsbuchhandlung, Münster/Westf.Google Scholar
  34. Weyl, H. [ 1935 ] “Elementare Theorie der konvexen Polyeder”, Commentarii Mathematici Helvetici 7 290–306. [Translation in: Kuhn, H. and A. Tucker (eds) Contributions to the Theory of Games I, Princeton University Press, Princeton, 3–18.]Google Scholar
  35. Yemelichev, V.A., M.M. Kovalev and M.K. Kravtsov [ 1984 ] Polytopes, Graphs and Optimisation translated by G.H. Lawden, Cambridge University Press, Cambridge.Google Scholar
  36. Zurmühl, R. [1958] Matrizen,Springer Verlag, Berlin, 2nd edition.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Manfred Padberg
    • 1
  1. 1.Leonard N. Stern School of Business, Statistics and Operations Research DepartmentNew York UniversityNew York CityUSA

Personalised recommendations