Advertisement

Combinatorial Optimization: An Introduction

  • Manfred Padberg
Part of the Algorithms and Combinatorics book series (AC, volume 12)

Abstract

In the end let us return to the beginning and consider the hypothetical Berlin airlift model of Chapter 1.2.3 for the sake of concreteness. As we have noted there the linear programming solution to the formulation is truly an approximation to the problem that the decision-maker faces: pilots are, of course, “indivisible” and because of that he would like answers in terms of the natural numbers 0, 1, 2, 3, ... rather than in rationals or reals. So we have to require that some or all of the variables of the model must be integer-valued.

Keywords

Extreme Point Ideal Formulation Integer Solution Valid Inequality Complete Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balinski, M.L. and K. Spielberg [ 1969 ] “Methods for integer programming: Algebraic, combinatorial and enumerative”, in Aronofsky (ed) Progress in Operations Research, Wiley, New York, 195–192.Google Scholar
  2. Beale, E.M.L. [ 1965 ] “Survey of integer programming”, Operational Research Quarterly 16 219–228.CrossRefGoogle Scholar
  3. Benichou, M., J.M. Gauthier, P. Girodet, G. Heutges, G. Ribière and O. Vincent [ 1971 ] “Experiments in mixed-integer linear programming”, Mathematical Programming 1 76–94.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Crowder, H., E.L. Johnson and M. Padberg [ 1983 ] “Solving large-scale zero-one linear programming problems”, Operations Research 31 803–834.zbMATHCrossRefGoogle Scholar
  5. Dakin, R.J. [ 1965 ] “A tree-search algorithm for mixed-integer programming”, Computer J. 8 250–255.MathSciNetzbMATHCrossRefGoogle Scholar
  6. Dietrich, B.L. and L.F. Escudero [ 1990 ] “Coefficient reduction for knapsack constraints in 0–1 programs with VUBs”, Operations Research Letters 9 9–14.MathSciNetzbMATHCrossRefGoogle Scholar
  7. Dietrich, B.L. and L.F. Escudero [ 1993 ] “Efficient reformulation for 0–1 programs: Methods and results” Discrete Applied Mathematics 42 147–175.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Driebeek, N.J. [ 1966 ] “An algorithm for the solution of mixed integer programming problems”, Management Science 12 576–587.CrossRefGoogle Scholar
  9. Grötschel, M. and O. Holland [ 1987 ] “A cutting-plane algorithm for minimum perfect 2-matching”, Computing 39 327–344.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Grötschel, M., M. Jünger and G. Reinelt [ 1984 ] “A cutting plane algorithm for the linear ordering problem”, Operations Research 32 1195–1220.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Grötschel, M., C.L. Monma and M. Stoer [ 1992 ] “Computational results with a cutting plane algorithm for designing communication networks with low-connectivity constraints”, Operations Research 40 309–330.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Guignard, M. and K. Spielberg [ 1981 ] “Logical reduction methods in zero-one programming: Minimal preferred inequalities”, Operations Research 29 49–74.MathSciNetzbMATHCrossRefGoogle Scholar
  13. Hoffman, K.L. and M. Padberg [ 1985 ] “LP-based combinatorial problem solving”, Annals of Operations Research 4 145–194.MathSciNetCrossRefGoogle Scholar
  14. Hoffman, K.L. and M. Padberg [ 1991 ] “Improving LP-representations of zero-one linear programs for branch-and-cut”, ORSA Journal on Computing 3 121–134.zbMATHCrossRefGoogle Scholar
  15. Hoffman, K.L. and M. Padberg [ 1993 ] “Solving airline crew scheduling problems by branch-and-cut”, Management Science 39 657–682.zbMATHCrossRefGoogle Scholar
  16. Land, A.H. and A.G. Doig [ 1960 ] “An automatic method for solving discrete programming problems”, Econometrica 28 497–520.MathSciNetzbMATHCrossRefGoogle Scholar
  17. Lawler, E.L. and D.E. Woods [ 1966 ] “Branch-and-bound methods: A survey”, Operations Research 14 699–719.MathSciNetzbMATHCrossRefGoogle Scholar
  18. Little, J.D.C., K.G. Murty, D.W. Sweeney and C. Karel [ 1963 ] “An algorithm for the traveling salesman problem”, Operations Research 11 979–989.CrossRefGoogle Scholar
  19. Padberg, M. and G. Rinaldi [ 1991 ] “A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems”, SIAM Review 33 60–100.MathSciNetzbMATHCrossRefGoogle Scholar
  20. Tomlin, J.A. [ 1971 ] “An improved branch-and-bound method for integer programming”, Operations Research 19 1070–1074.MathSciNetzbMATHCrossRefGoogle Scholar
  21. Van Roy, T. and L.A. Wolsey [ 1987 ] “Solving mixed integer programming problems using automatic reformulation” Operations Research 35 45–57.MathSciNetzbMATHCrossRefGoogle Scholar
  22. Williams, H.P. [ 1985 ] Model Building in Mathematical Programming, 2nd edition, Wiley, New York.zbMATHGoogle Scholar
  23. Wolsey, L.A. [ 1989 ] “Strong formulations for mixed integer programming: A survey”, Mathematical Programming 45 173–191.MathSciNetzbMATHCrossRefGoogle Scholar
  24. Fulkerson, D.R. [ 1971 ] “Blocking and antiblocking pairs and polyhedra”, Mathematical Programming 1 168–194.MathSciNetzbMATHCrossRefGoogle Scholar
  25. Grötschel, M. and M. Padberg [ 1985 ] “Polyhedral theory”, Chapter 8 in Lawler, E.L. et al (eds), The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, Wiley, Chichester.Google Scholar
  26. Grötschel, M., L. Lovasz and A. Schrijver [ 1988 ] Geometric Algorithms and Combinatorial Optimization, Springer Verlag, Berlin.zbMATHCrossRefGoogle Scholar
  27. Maurras, J.F. [ 1976 ] Polytopes à sommets dans 0,1r, Thèse de doctorat d’ État, Université Paris VII, Paris.Google Scholar
  28. Meyer, R.R. [ 1974 ] “On the existence of optimal solutions to integer and mixed integer programming problems”, Mathematical Programming 7 223–235.MathSciNetzbMATHCrossRefGoogle Scholar
  29. Nemhauser, G.L. and L. Wolsey [ 1988 ] Integer and Combinatorial Optimization, Wiley, New York.zbMATHGoogle Scholar
  30. Padberg, M. and M.R. Rao [ 1981 ] “The Russian method for linear inequalities I II: Bounded integer programming”, Preprint, New York University, New York.Google Scholar
  31. Padberg, M. and Ting-Yi Sung [ 1991 ] “An analytical comparison of different formulations of the travelling salesman problem”, Mathematical Programming 52 315–357.MathSciNetzbMATHCrossRefGoogle Scholar
  32. Simmonard, M. [ 1966 ] Linear Programming, Prentice-Hall, Englewood.Google Scholar
  33. Weyl, H. [ 1935 ] “Elementare Theorie der konvexen Polyeder”, Commentarii Math-ematici Helvetici 7 290–306 (English translation in Kuhn, H. and A. Tucker (eds), [1950] Contributions to the Theory of Games I, Princeton University Press, Princeton, NJ, 3–18.)Google Scholar
  34. Wolsey, L. [ 1989 ] “Strong formulations for mixed integer programming: A Survey”, Mathematical Programming 45 173–191.MathSciNetzbMATHCrossRefGoogle Scholar
  35. Berge, C. [ 1972 ] “Balanced matrices”, Mathematical Programming 2 19–31.MathSciNetzbMATHCrossRefGoogle Scholar
  36. Cornuéjols, G. and B. Novick [ 1994 ] “Ideal 0,1 matrices”, Journal of Combinatorial Theory, Series B, 60 145–157.Google Scholar
  37. Hoffman, A. and J. Kruskal [ 1958 ] “Integral boundary points of convex polyhedra”, in Kuhn, H. and A. Tucker (eds), Linear inequalities and related systems, Princeton University Press, Princeton 223–246.Google Scholar
  38. Lehman, A. [ 1990 ] “The width-length inequality and degenerate projective planes”, in Cook, W. and P.D. Seymour (eds), Polyhedral Combinatorics, DIMACS Series in Discrete Mathematics and Theoretical Computer Science.Google Scholar
  39. Padberg, M. [ 1974 ] “Perfect zero-one matrices”, Mathematical Programming 6 180–196.MathSciNetzbMATHCrossRefGoogle Scholar
  40. Padberg, M. [ 1975 ] “Characterization of totally unimodular, balanced and perfect matrices” in Roy, B. (ed), Combinatorial programming: Methods and applications, Reidel, Dordrecht 275–284.CrossRefGoogle Scholar
  41. Padberg, M. [ 1976 ] “Almost integral polyhedra related to certain combinatorial optimization problems”, Linear Algebra and Its Applications 15 69–88.MathSciNetzbMATHCrossRefGoogle Scholar
  42. Padberg, M. [ 1988 ] “Total unimodularity and the Euler-subgraph problem”, Operations Research Letters 7 173–179.MathSciNetzbMATHCrossRefGoogle Scholar
  43. Padberg, M. [ 1993 ] “Lehman’s forbidden minor characterization of ideal 0–1 matrices”, Discrete Mathematics 111 409–420.MathSciNetzbMATHCrossRefGoogle Scholar
  44. Veinott, R. and G.B. Dantzig [ 1968 ] “Integral extreme points”, SIAM Review 10 371–372.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Manfred Padberg
    • 1
  1. 1.Leonard N. Stern School of Business, Statistics and Operations Research DepartmentNew York UniversityNew York CityUSA

Personalised recommendations