Advertisement

Introduction

  • Manfred Padberg
Part of the Algorithms and Combinatorics book series (AC, volume 12)

Abstract

When mathematics hit the front page of the New York Times you just know that it must have commercial value. Indeed, linear programming gets to be mentioned in the popular press not infrequently and the following verbatim quotation from a front page article of the New York Times of November 19, 1984, while not exactly of a recent vintage, sums up very well part of why this is so. Under the heading “Breakthrough in Problem Solving” one reads in the second paragraph:

“The discovery, which is to be formally published next month, is already circulating rapidly through the mathematics world. It has also set off a deluge of inquiries from brokerage houses, oil companies and airlines, industries with millions of dollars at stake in problems known as linear programming.”

Keywords

Digital Computer Linear Programming Model Projective Algorithm Simplex Algorithm Linear Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arabeyre, J.P., J. Fearnley, F. Steiger and W. Theather [ 1969 ] “The air crew scheduling problem: A survey”, Trans. Sci. 3 140–163.CrossRefGoogle Scholar
  2. Balinski, M.L. [ 1991 ] “Gaspard Monge: Pour la patrie, les sciences et la gloire”, in Carasso et al (eds), “Applied Mathematics for Engineering Science”, CépaduèsÉditions, Toulouse 21–37.Google Scholar
  3. Cahn, A.S. [ 1948 ] “The warehouse problem”, Bull.Amer.Math.Soc. 54 10–73.Google Scholar
  4. Cohen, K.J. and F.S. Hammer (eds) [ 1966 ] “Analytical Methods in Banking”, Irwin, Homewood.Google Scholar
  5. Dantzig, G.B. [ 1949 ] “Programming in a linear structure”, Econometrica 17 73–74.CrossRefGoogle Scholar
  6. Dantzig, G.B. [ 1982 ] “Reminiscences about the origins of linear programming”, Operations Research Letters 1 43–48.MathSciNetCrossRefGoogle Scholar
  7. Dantzig, G.B. [1988] “Impact of linear programming on computer development”, OR/MS Today August 1988 12–17.Google Scholar
  8. Dantzig, G.B. and J.H. Ramser [ 1959 ] “The truck dispatching problem”, Management Science 6 80–91.MathSciNetzbMATHCrossRefGoogle Scholar
  9. Fabian, T. [ 1958 ] “A linear programming model of integrated iron and steel production”, Management Science 4 415–449.CrossRefGoogle Scholar
  10. Hitchcock, F.L. [ 1941 ] “The distribution of a product from several sources to numerous localities”, J. Math. Phys. 20 224–230.MathSciNetGoogle Scholar
  11. Kantorovich, L.V. [ 1939 ] “Mathematical methods in the organization and planning of production” English translation in Management Science (1960) 6 366–422.MathSciNetGoogle Scholar
  12. Kantorovich, L.V. [ 1942 ] “On the translocation of masses”, C.R.Acad.Sci. URSS 37 199–201.Google Scholar
  13. Koopmans, Tj. [ 1949 ] “Optimum utilization of the transport system”, Suppl. Econometrica 7 136–146.MathSciNetCrossRefGoogle Scholar
  14. Leontief, W.W. [ 1928 ] “Die Wirtschaft als Kreislauf”, Archiv für Sozialwissenschaft und Sozialpolitik, 60 577–623.Google Scholar
  15. Manne, A.S. [ 1956 ] “Scheduling of Petroleum Refinery Operations”, Harvard U. Press, Cambridge.Google Scholar
  16. Monge, G. [ 1781 ] “Mémoire sur la théorie des remblais et des déblais”, Mém. Acad. Royale 666–704.Google Scholar
  17. Neisser, H. [ 1932 ] “Lohnhöhe und Beschäftigungsgrad im Marktgleichgewicht”, Weltwirtschaftliches Archiv 36 413–455.Google Scholar
  18. von Neumann, J [ 1936 ] “Über ein ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes”, Ergebnisse eines mathematischen Kolloquiums 8.Google Scholar
  19. Schlesinger, K. [ 1934 ] “Über die Produktionsgleichungen der ökonomischen Wertlehre”, Ergebnisse eines mathematischen Kolloquiums 6 10–11.Google Scholar
  20. von Stackelberg, H. [ 1933 ] “Zwei kritische Bemerkungen zur Preistheorie Gustav Cassels”, Zeitschrift für Nationalökonomie 4 456–472.zbMATHCrossRefGoogle Scholar
  21. Stigler, G.J. [1945] “The cost of subsistence”, Journal of Farm Economics 27 303–314.CrossRefGoogle Scholar
  22. Symmonds, G.H. [ 1955 ] Linear Programming: The Solution of Refinery Problems, Esso Standard Oil Co., New York.Google Scholar
  23. Wald, A. [ 1934 ] “Über die eindeutige positive Lösbarkeit der Produktionsgleichungen”, Ergebnisse eines mathematischen Kolloquiums 6 12–18.Google Scholar
  24. Wald, A. [ 1935 ] “Über die Produktionsgleichungen der ökonomischen Wertlehre”, Ergebnisse eines mathematischen Kolloquiums 7 1–6.Google Scholar
  25. Zeuthen, F. [ 1933 ] “Das Prinzip der Knappheit, technische Kombination und ökonomische Qualität”, Zeitschrift für Nationalökonomie 7 1–24.Google Scholar
  26. Balas, E. [ 1970 ] Handwritten lecture notes, unpublished.Google Scholar
  27. Bixby, R.E. [1989] Personal communication.Google Scholar
  28. Borgwardt, K.H. [ 1982 ] “Some distribution independent results about the assymptotic order of the average number of pivot steps in the simplex algorithm”, Mathematics of Operations Research 7 441–462.MathSciNetzbMATHCrossRefGoogle Scholar
  29. Brooke, A., D. Kendrick and A. Meeraus [ 1988 ] GAMS: A User’s Guide, The Scientific Press, Redwood City.Google Scholar
  30. Brown, G.W. [ 1949 ] “Some computation methods for linear systems involving inequalities”, Abstract, Econometrica 17 162–163.Google Scholar
  31. Charnes A., W.W. Cooper and R. Mellon [ 1952 ] “Blending aviation gasolines: A study in programming interdependent activities in an integrated oil company”, Econometrica 20 135–159.CrossRefGoogle Scholar
  32. Charnes A., W.W. Cooper and R. Mellon [ 1954 ] “A model for programming and sensitivity analysis in an integrated oil company”, Econometrica 22 193–217.CrossRefGoogle Scholar
  33. Charnes A., W.W. Cooper and R. Mellon [ 1955 ] “A model for optimizing production by reference to cost surrogates”, Econometrica 23 307–323.MathSciNetzbMATHCrossRefGoogle Scholar
  34. Dantzig, G.B. [ 1949 ] “Programming of interdependent activities II: Mathematical model”, Econometrica 17 200–211.MathSciNetCrossRefGoogle Scholar
  35. Edmonds, J. [ 1965 ] “Paths, trees and flowers”, Canadian Journal of Mathematics 17 449–467.MathSciNetzbMATHCrossRefGoogle Scholar
  36. Forrest, J.H. [1989] Personal communication.Google Scholar
  37. Gacs, P. and L. LovSsz [ 1981 ] “Khacian’s algorithm for linear programming”, Mathematical Programming Study 14 61–68.zbMATHCrossRefGoogle Scholar
  38. Garey, M.R. and D.S. Johnson [ 1979 ] Computers and Intractability, Freeman, San Francisco.zbMATHGoogle Scholar
  39. Gay, D.M. [ 1974 ] “On Skolnik’s proposed polynomial-time linear programming algorithm”, SIGMAP Newsletter 16 15–21.Google Scholar
  40. Gill, D.E., W. Murray, M.A. Saunders, J.A. Tomlin and M.H. Wright [ 1986 ] “On projected Newton barrier methods for linear programming and an equivalent to Karmarkar’s projective method”, Mathematical Programming 36 183–209.MathSciNetzbMATHCrossRefGoogle Scholar
  41. Greenberg, H.J. [ 1983 ] “A functional description of ANALYZE: A computer assisted analysis system for linear programming models” ACM Transactions on Mathematical Software 9 18–56.zbMATHCrossRefGoogle Scholar
  42. Grötschel, M., L. Lovâsz and A. Schrijver [ 1981 ] “The ellipsoid method and its consequences in combinatorial optimization”, Combinatorica 1 169–197.MathSciNetzbMATHCrossRefGoogle Scholar
  43. Grünbaum, B. [ 1967 ] Convex Polytopes, Wiley, London.zbMATHGoogle Scholar
  44. Haimovich, M. [ 1983 ] “The simplex method is very good! — On the expected number of pivot steps and related properties of random linear programs”, Technical Report, Graduate School of Business, Columbia University, N.Y.Google Scholar
  45. Hoffman, A.J., Mannos, M., Sokolowsky, D. and N. Wiegman [ 1953 ] “Computational experience in solving linear programs”, Journal of the Society of Industrial and Applied Mathematics 1 17–33.zbMATHCrossRefGoogle Scholar
  46. Karmarkar, N. [ 1984 ] “A new polynomial-time algorithm for linear programming”, Combinatorica 4 373–395.MathSciNetzbMATHCrossRefGoogle Scholar
  47. Karp, R. and Ch. Papadimitriou [ 1982 ] “On linear characterization of combinatorial optimization problems”, SIAM Journal on Computing 11 620–632.MathSciNetzbMATHCrossRefGoogle Scholar
  48. Khachian, L.G. [ 1979 ] “A polynomial algorithm in linear programming”, Soy. Math. Dokl. 20 191–194.Google Scholar
  49. Khachian, L.G. [ 1982 ] “On the exact solution of systems of linear inequalities and linear programming problems”, USSR Comp. Math. and Math. Phys. 22 239–242.CrossRefGoogle Scholar
  50. Klee, V. and G.J. Minty [ 1972 ] “How good is the simplex algorithm?” in Sisha (ed) Inequalities–III, Academic Press, New York 159–175.Google Scholar
  51. Orchard-Hays, W. [ 1968 ] Advanced Linear Programming Computing Techniques, McGraw-Hill, New York.Google Scholar
  52. Padberg, M. [ 1986 ] “A different convergence proof for the projective method”, Operations Research Letters 4 253–257.MathSciNetzbMATHCrossRefGoogle Scholar
  53. Padberg, M. and M.R. Rao [1980–1981] “The Russian method for linear inequalities, Parts I, II and IIP”, Preprints, New York University.Google Scholar
  54. Padberg, M. and G. Rinaldi [ 1991 ] “A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems”, SIAM Review 33 60–100.MathSciNetzbMATHCrossRefGoogle Scholar
  55. Skolnik, H. [ 1973 ] “Outline of a new algorithm for linear programming”, Paper presented at the Stanford Mathematical Programming Symposium, August 1973.Google Scholar
  56. Smale, S. [ 1983 ] “The problem of the average speed of the simplex method”, in Bachem et al (eds) Mathematical Programming: The State of the Art, Springer-Verlag, Berlin 530–539.Google Scholar
  57. Balas, E. [ 1970 ] Handwritten lecture notes, unpublished.Google Scholar
  58. Dantzig, G.B. [ 1949 ] “Programming of interdependent activities II: Mathematical model”, Econometrica 17 200–211.MathSciNetCrossRefGoogle Scholar
  59. Dantzig, G.B. [ 1982 ] “Reminiscences about the origins of linear programming”, Operations Research Letters 1 43–48.MathSciNetCrossRefGoogle Scholar
  60. Hadley, G. [ 1962 ] Linear Programming, Addison-Wesley, Reading.zbMATHGoogle Scholar
  61. Kraemer, R.D. and M.R. Hillard [1991] “Mission (not) impossible”, OR/MS Today April 1991 44–45.Google Scholar
  62. Roehrkasse, R.C. and G.C. Hughes [1990] “Crisis analysis”, OR/MS Today Dec. 1990 22–27.Google Scholar
  63. Schuppe, Th. [1991] “OR goes to war”, OR/MS Today April 1991 36–44.Google Scholar
  64. Wood, M.K. and G.B. Dantzig [ 1949 ] “Programming of interdependent activities I: General discussion”, Econometrica 17 193–199.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Manfred Padberg
    • 1
  1. 1.Leonard N. Stern School of Business, Statistics and Operations Research DepartmentNew York UniversityNew York CityUSA

Personalised recommendations