Skip to main content

Adenosine production during balloon-induced ischemia

  • Conference paper
  • 41 Accesses

Abstract

It is well established that myocardial metabolites play a significant role in the local adjustment of coronary blood flow (5, 19). Beside others (7, 19), vasoactive adenosine has been described to be a major factor involved in the metabolic control of coronary flow. Experimental studies have demonstrated that inadequate supply of oxygen to the heart, e.g. during ischemia, leads to enhanced formation of adenosine which in turn increases coronary flow to meet the enhanced oxygen requirement (6, 11, 22). According to these results adenosine is proposed to be involved in a feed-back controlled system in which the ratio between supply and demand of oxygen is the major trigger mechanism for enhanced production of adenosine by the heart (1, 5, 25).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardenheuer H, Schrader J (1986) Supply-to-demand ratio for oxygen determines formation of adenosine by the heart. Am J Physiol 250: 173

    Google Scholar 

  2. Bardenheuer H, Whelton BK, Sparks HV (1987) Cellular compartmentation of adenosine in the heart. In: Gerlach E, Becker BF (eds). Topics and perspectives in adenosine research, Springer Verlag, Berlin, Heidelberg, pp. 480–485

    Google Scholar 

  3. Becker BF, Bardenheuer H, Overhage de Reyes I, Gerlach E (1985) Effects of theophylline on dipyridamole-induced coronary venous adenosine release and coronary dilation. In: Stefanovich V, Rudolphi K, Schubert P (eds). Adenosine:receptors and modulation of cell function IRL, Oxford, pp. 441–449

    Google Scholar 

  4. Bergmeyer HU (1974) Methoden der enzymatischen Analyse. Weinheim FRG. Verlag Chemie

    Google Scholar 

  5. Berne RM (1980) The role of adenosine in the regulation of coronary blood flow. Circ Res 47: 807

    Article  PubMed  CAS  Google Scholar 

  6. Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol 204: 317

    PubMed  CAS  Google Scholar 

  7. Cobbe SM, Poole-Wilson PA (1982) Continuous coronary sinus and arterial pH-monitoring during pacing-induced ischemia in coronary artery disease. Br Heart J 47: 369

    Article  PubMed  CAS  Google Scholar 

  8. Detre K, Holubkov R, Kesley S et al. (1988) Percutaneous transluminal coronary angioplasty in 1985–1986 and 1977–1981. N Engl J Med 318: 265

    Article  PubMed  CAS  Google Scholar 

  9. Erbel R, Henkel B, Schreiner G et al. (1986) Clinical, electrocardiographic, and hemodynamic changes during coronary angioplasty. Influence of nitroglycerine and nifedipine. In: Coronary angioplasty: a controlled model for ischemia. Serruys PW, Meester GT (eds), Martinus Nijhoff Publishers, pp. 39–53

    Google Scholar 

  10. Fleckenstein A, Döring HJ, Leder O The significance of high-energy phosphate exhaustion in the etiology of isoproterenol-induced cardiac ulcerosis and its prevention by iproveratril, compound D or precylamin. In: Lamasch M, Royer R (eds) International Symposium on Drugs and Metabolism of Myocardium and Striated Muscle. Nance, pp. 11–22

    Google Scholar 

  11. Gerlach E, Deuticke B, Dreisbach RH (1963) Der Nukleotid-Abbau im Herzmuskel bei Sauerstoffmangel and seine mögliche Bedeutung für die Coronardurchblutung. Naturwissenschaften 50: 228

    Article  CAS  Google Scholar 

  12. Grüntzig A (1976) Perkutane Dilatation von Coronarstenosen — Beschreibung eines neuen Kathetersystems. Klin Wochenschr 54: 543

    Article  PubMed  Google Scholar 

  13. Karsch KR, Mauser M, Spiel L (1985) Wirkungsmechanismen von intrakoronarem, sublingualem and intravenösem Nifedipine bei Patienten mit instabiler Angina pectoris. In: Meyer J, Erbel R. (eds) Intravenöse and intrakoronare Anwendung von Adalat. Springer Verlag Berlin Heidelberg, pp. 114–124

    Google Scholar 

  14. Kober G, Vallbracht C, Kaltenbach M (1987) Early and late results after percutaneous trans-luminal coronary angioplasty compared with bypass operation. In: B. Höfling (ed) Current problems in PTCA. Steinkopff Verlag Darmstadt, Springer New York pp. 21–26

    Google Scholar 

  15. Miura M, Tominaga S, Hashimoto K (1967) Potentiation of reactive hyperemia in the coronary and femoral circulation by the selective use of 2,6-bis-(diaethanolamono)-4,8-dipiperidinopyrimido- (5,4-d)-pyrimidine. Arzneiur Forsch 17: 976

    CAS  Google Scholar 

  16. Nees S, Gerlach E (1982) Adenine nucleotide and adenosine metabolism in cultured coronary endothelial cells: formation and release of adenine compounds and possible functional implications. In: Berne RM, Rubio R (eds) Regulatory function of adenosine Nijhoff, Boston, pp. 347–355

    Google Scholar 

  17. Ontyd J, Schrader J (1984) Measurement of adenosine, inosine, and hypoxanthine in human plasma. J Chromatogr 307: 404

    Article  PubMed  CAS  Google Scholar 

  18. Pearson JD, Carleton JS, Hutchings A, Gordon JL (1978) Uptake and metabolism of adenosine by pig endothelial and smooth muscle cells in culture. Biochem J 170: 265

    PubMed  CAS  Google Scholar 

  19. Poole-Wilson PA, Webb SC (1986) Role of potassium in the genesis of arrhythmias during ischemia. Evidence from coronary angioplasty. In: Coronary angioplasty: a controlled model for ischemia. Serruys PW, Meester GT (eds) Martinus Nijhoff Publishers. pp. 95–103

    Google Scholar 

  20. Rentrop KP, Thornton JC, Feit F et al. (1988) Determinants and protective potential of coronary arterial collaterals as assessed by an angioplasty model. Am J Cardiol 61: 677

    Article  PubMed  CAS  Google Scholar 

  21. Schrader J, Berne RM, Rubio R. (1972) Uptake and metabolism of adenosine by human erythrocyte ghosts. Am J Physiol 223: 159

    PubMed  CAS  Google Scholar 

  22. Schrader J, Haddy FJ, Gerlach E (1977) Release of adenosine, inosine and hypoxanthine from the isolated guinea pig heart during hypoxia, flow-autoregulation and reactive hyperemia. Pfluegers Arch 369: 1

    Article  CAS  Google Scholar 

  23. Serruys PW, Wijns W, van den Brand M et al. (1984) Left ventricular performance, regional blood flow, and lactate metabolism during transluminal angioplasty. Circulation 1: 25

    Article  Google Scholar 

  24. Simon R, Amende I, Herrmann G et al. (1986) Effect of prolonged balloon inflations on hemodynamics and coronary flow with respect to balloon position in patients undergoing coronary angioplasty in: Coronary angioplasty: A controlled model for ischemia. Serruys PW, Meester GT (eds) Martinus Nijhoff Publishers. pp. 63–76

    Google Scholar 

  25. Sparks HV, Bardenheuer H (1986) Regulation of adenosine formation by the heart. Cire Res 58 (2): 193

    Article  CAS  Google Scholar 

  26. Taegtmeyer H, Roberts AFC, Raine AEG (1985) Energy metabolism in reperfused heart muscle: metabolic correlates to return of function. JACC 6: 846

    Article  Google Scholar 

  27. Van Belle VM (1969) Uptake and deamination of adenosine by blood:species differences effect of pH ions, temperature and metabolic inhibitors. Biochim Biophys Acta 192: 124

    Article  PubMed  Google Scholar 

  28. Vatner SF, Patrick TA, Knight DR et al. (1988) Effects of calcium channel blocker on responses of blood flow, function, arrhythmias and extent of infarction following reperfusion in conscious baboons. Circ Res 62: 105

    Article  PubMed  CAS  Google Scholar 

  29. Verdouw PW, Stam H (1980) Lactate. Physiologic, methodologic and pathologic approach. In: Moret PR et al. (eds), Springer Verlag Berlin. pp. 207–223

    Google Scholar 

  30. Wendt VE, Sundermeyer JF, den Bakker PB, Bing RJ (1962) The relationship between coronary flow, myocardial oxygen consumption and cardiac work as influenced by persantin. Am J Cardiol 9: 449

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bardenheuer, H., Höfling, B., Fabry, A. (1989). Adenosine production during balloon-induced ischemia. In: Höfling, B., v. Pölnitz, A., Erdmann, E., Steinbeck, G., Strauer, B.E. (eds) Interventional Cardiology and Angiology. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-12114-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12114-6_5

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-12116-0

  • Online ISBN: 978-3-662-12114-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics