Advertisement

Anwendungen der Informationstheorie auf Impulsprobleme

Conference paper

Zusammenfassung

Die Nachrichtentechnik hat zwei wesensverschiedene Aspekte: der eine gehört der Welt der Energie- und Arbeitsleistung an (oder — in der Ausdrucksweise Max Benses [20] — der klassischen, archimedischen), der andere der Welt der Informations- und Kommunikationserzeugung (der nichtklassischen, pascalschen). Keine von beiden ist ohne die andere denkbar; sie ergänzen sich wechselseitig.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Schrifttum

Bücher

  1. [1]
    Bell, D. A.: Information Theory and its Engineering Applications. London: Pitman 1953.Google Scholar
  2. [2]
    Goldman, S.: Frequency Analysis, Modulation and Noise. New York/Toronto/London: Mc Graw-Hill 1948.Google Scholar
  3. [3]
    Goldman, S.: Information Theory. New York/London: Prentice Hall bzw. Constable & Comp. 1953.Google Scholar
  4. [4]
    Lawson, J. L., u. G.E. Uhlenbeck: Threshold Signals; = Bd. 24 der MIT Radiation Laboratory Series, New York/Toronto/London: Mc Graw-Hill 1950.Google Scholar
  5. [5]
    Manley, R. G.: Waveform Analysis. London: Chapman & Hall 1945.Google Scholar
  6. [6]
    Shannon, C. E., u. W. Weaver: The Mathematical Theory of Communication. Urbana: The Univ. of Illinois Press 1949.Google Scholar
  7. [7]
    van Soest, J. L.: Informatie-Theorie en Communicatie-Theorie; Delft (Handleidingen bij het onderwijs aan de Technische Hogeschool) [ 1953 ].Google Scholar
  8. [8]
    Stumpff, K.: Grundlagen und Methoden der Periodenforschung; Berlin: Springer 1937.CrossRefGoogle Scholar
  9. [9]
    Wiener, N.: Extrapolation, Interpolation, and Smoothing of Stationary Time Series; with Engineering Applications. New York/London: Wiley bzw. Chapman & Hall 1950.Google Scholar
  10. [10]
    Woodward, P. M.: Probability and Information Theory, with Applications to Radar. London: Pergamon Press 1953.zbMATHGoogle Scholar
  11. [11]
    Communication Theory, hrsg. v. W. Jackson. London: Butterworths Scientific Publications 1953.Google Scholar
  12. [12]
    La Cybernétique; théorie du signal et de l’information; Réunions d’études et de mises au point tenues sous la présidence de Louis de Broglie. Paris: Editions de la Revue d’Optique Théorique et Instrumentale 1951.Google Scholar
  13. [13]
    Symposium on Information Theory, Report of Proceedings; London: Ministry of Supply 1950.Google Scholar
  14. [14]
    Trans. of the 1954 Symposium on Information Theory, Profess. Group on Information Theory, I. R. E., New York 1954.Google Scholar

Bibliographien

  1. [15]
    Baker, A. S.: Bibliography of Information Theory; Newton, Mass. 1953 (Engineering Library, Raytheon Manufacturing Company ); Supplement 1954.Google Scholar
  2. [16]
    Stumpers, F. L.: A Bibliography of Information Theory; Communication Theory — Cybernetics. MIT Res. Lab. Electron. 1953, 1. Supplement 1954, 2. Supplement 1955.Google Scholar
  3. [17]
    C. C. I. R. Bibliography on Communication Theory; Geneve 1953 (Union internationale des télécommunications); Supplement 1954 und 1955.Google Scholar

Aufsätze

  1. [18]
    Bailey, A. E.: Integration in Pulse Radar Systems; in [11],S. 216–230.Google Scholar
  2. [19]
    Barker, R. H.: Group Synchronizing of Binary Digital Systems; in [11],S. 273–287.Google Scholar
  3. [20]
    Bense, M.: Philosophie der Technik. Phys. Bl. Bd. 10 (1954) S. 481–485.CrossRefGoogle Scholar
  4. [21]
    Beurle, R. L.: Video Signal Integration Using Acoustic Delay Lines and Dynamic Magnetic Storage; in [11],S. 231–235.Google Scholar
  5. [22]
    Brillouin, L.: Negentropy and Information in Telecommunications, Writing, and Reading. J. Appl. Phys. Bd. 25 (1954) S. 595–599.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [23]
    Cheatham, T. P. jr.: An Electronic Correlator; Mit Res. Lab. Electron. Techn. Rep. No. 122, 1951.Google Scholar
  7. [24]
    Costas, J. P.: Coding with Linear Systems; Mit Res. Lab. Electron. Techn. Rep. No. 226 (1952).Google Scholar
  8. [25]
    Dwork, B. M.: Detection of a Pulse Superimposed on Fluctuation Noise. Proc. I. R. E. Bd. 38 (1950) S. 771–774.CrossRefMathSciNetGoogle Scholar
  9. [26]
    George, S. F., u. A. S. Zamanakos, Comb Filters for Pulsed Radar Use. Proc. I. R. E. Bd. 42 (1954) S. 1159–1165.Google Scholar
  10. [27]
    Gerlach, A. A., u. D. S. Schover: Pulse-Width Discriminator. Electronics Bd. 24 (Juni 1951 ) S. 105–107.Google Scholar
  11. [28]
    Harrington, J. V., u. T. F. Rogers, Signal-to-Noise Improvement through Integration in a Storage Tube; Proc. I. R. E. Bd. 28 (1950) S. 1197–1203.Google Scholar
  12. [29]
    Harrison, C. W.: Experiments with Linear Prediction in Television. Bell Syst. Techn. J. Bd. 31 (1952) S. 764–783.Google Scholar
  13. [30]
    Icole, J., u. J. Oudin: Analyse temporelle et filtrage; Ann. Télécomm. Bd. 7 (1952) S. 99–108.Google Scholar
  14. [31]
    Knudtzon, N.: Experimental Study of Statistical Characteristics of Filtered Random Noise; Mit Res. Lab. Electron. Techn. Rep. No. 115, 1949.Google Scholar
  15. [32]
    Lee, Y. W., T. P. Cheatham jr. u. J. B. Wiesner: Application of Correlation Analysis to the Detection of Periodic Signals in Noise. Proc. I. R. E. Bd. 38 (1950) S. 1165–1171, Diskussion ebda. Bd. 39 (1951) S. 1094–1096.Google Scholar
  16. [33]
    Meyer-Eppler, W.: Exhaustion Methods of Selecting Signals from Noisy Backgrounds; in [11],S. 183–194.Google Scholar
  17. [34]
    Meyer-Eppler, W.: Exhaustion — ein wirksames Mittel zur Schwingungsanalyse; Umschau in Wiss. u. Techn. Bd. 52 (1952) S. 555–558.Google Scholar
  18. [35]
    Oliver, B. M.: Efficient Coding; Bell Syst. Techn. J. Bd. 31 (1952) S. 724 bis 750.Google Scholar
  19. [36]
    Smith, O. J. M.: Separating Information from Noise; Trans. I. R. E., Pgct-1 (1952) S. 81–100.Google Scholar
  20. [37]
    Truxal, J. G., u. J. N. Warfield: Synthesis of a Dynamically-Variable Electronic Filter. Proc. Nat. Electronics Conf. Bd. 8 (1952) S. 419–426.Google Scholar
  21. [38]
    Urkowitz, H.: Filters for Detection of Small Radar Signals in Clutter. J. Appl. Phys. Bd. 24 (1953) S. 1024–1031.CrossRefGoogle Scholar
  22. [39]
    van Vleck, J. H., u. D. Middleton: A Theoretical Comparison of the Visual, Aural, and Meter Reception of Pulsed Signals in the Presence of Noise; J. Appl. Phys. Bd. 17 (1946) S. 940–971.CrossRefGoogle Scholar
  23. [40]
    Zadeh, L. A.: Optimum Nonlinear Filters; J. Appl. Phys. Bd. 24 (1953) S. 396–404.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [41]
    Zadeh, L. A., u. K. S. Miller: Generalized Ideal Filters. J. Appl. Phys. Bd. 22 (1951) S. 1216–1217, Bd. 23 (1952) S. 223–228.zbMATHCrossRefMathSciNetGoogle Scholar
  25. [42]
    Zadeh, L. A., u. J. R. Ragazzini: Optimum Filter for the Detection of Signals in Noise. Proc. I. R. E. Bd. 40 (1952) S. 1223–1231.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1956

Authors and Affiliations

  1. 1.BonnDeutschland

Personalised recommendations