During the last few years much interest has been focused on the biologically active amines in the brain, but much less attention has been paid to histamine than to 5-hydroxytryptamine (serotonin) and the catecholamines. Although there is still much uncertainty about the physiological significance of 5-hydroxytryptamine and the catecholamines in the brain, these substances are included in modern concepts of “psychopharmacology”. Our knowledge of brain histamine is even more incomplete, but the available evidence tends to show that there are several similarities between all these substances as regards their distribution and general pattern of metabolism in the brain. The present account is an attempt to summarize observations on the pharmacological effects of histamine on the brain, after giving a survey of the general pattern of the distribution and metabolism of histamine in the brain. Finally, some physiological implications of the facts and speculations about brain histamine will be discussed.


Mast Cell Monoamine Oxidase Superior Cervical Ganglion Cerebral Ventricle Histidine Decarboxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel, J. J., and S. Kubota: On the presence of histamine (ß-iminazolyl-ethylamine) in the hypophysis cerebri and other tissues of the body and its occurrence among the hydrolytic decomposition products of proteins. J. Pharmacol. exp. Ther. 13, 243 (1919).Google Scholar
  2. Adam, H. M.: Histamine in the central nervous system and hypophysis of the dog. In: Regional Neurochemistry, ed. Kety, S. S. and Elkes, J. Oxford, London, New York, Paris: Pergamon Press 1961.Google Scholar
  3. Amin, A. H., T. B. B. Crawford, and J. H. Gaddum: The distribution of substance P and 5-hydroxytryptamine in the central nervous system of the dog. J. Physiol. (Lond.) 126, 596 (1954).Google Scholar
  4. Axelrod, J., W. Albers, and C. D. Clemente: Distribution of catechol-0-methyl transferase in the nervous system and other tissues. J. Neurochem. 5, 68 (1959).CrossRefGoogle Scholar
  5. Axelrod, J., P. D. Maclean, R. W. Albers, and H. Weissbach: Regional distribution of methyl transferase enzymes in the nervous system and glandular tissues. In: Regional Neurochemistry, ed. Kety, S. S. and Elkes, J. Oxford, London, New York, Paris: Pergamon Press 1961Google Scholar
  6. Belous, A. A.: Influence of histamine on the secretion of the neurohypophysis. Fiziol. Zh. S.S.S.R. 41, 666 (1955).Google Scholar
  7. Belous, A. A.: Influence of histamine on the secretion of the neurohypophysis. Cited in: Int. Abstr. biol. Sci. 7, 190 (1957).Google Scholar
  8. Bhargava, K. P., and K. K. Tangri: The central vasomotor effects of 5-hydroxytryptamine. Brit. J. Pharmacol. 14, 411 (1959).PubMedGoogle Scholar
  9. Bhawe, W. B.: Experiments on the fate of histamine and acetylcholine after their injection into the cerebral ventricles. J. Physiol. (Lend.) 140, 169 (1958).Google Scholar
  10. Blackmore, W. P., and G. R. Cherry: Antidiuretic action of histamine in the dog. Amer. J. Physiol. 180, 596 (1955).PubMedGoogle Scholar
  11. Bogdanski, D. F., H. Weissbach, and S. Udenfried: The distribution of serotonin, 5-hydroxytryptophan decarboxylase, and monoamine oxidase in brain. J. Neurochem. 1, 272 (1957).PubMedCrossRefGoogle Scholar
  12. Bovet, D., R. Kohn, M. Marotta, and B. Silvestrini: Some effects of histamine in the normal and Haemophilus pertussis vaccinated rat. Brit. J. Pharmacol. 13, 74 (1958).PubMedGoogle Scholar
  13. Brandon, A.: Etude électrocorticographique et électromyélographique de l’action de l’histamine. Arch. in Physiol. 63, 62 (1955).Google Scholar
  14. Brown, D. D., R. ToMcmcK, and J. Axelrod: The distribution and properties of a histaminemethylating enzyme. J. biol. Chem. 234, 2948 (1959).PubMedGoogle Scholar
  15. Cicardo, V. H., and A. O. M. StorrAni: Presence of histamine in central nervous system extracts. Nature (Lond.) 163, 365 (1949).CrossRefGoogle Scholar
  16. Clouet, D. H., M. K. Gaitonde, and D. Richter: The free histidine, histamine, and arginine content of the rat brain. J. Neurochem. 1, 228 (1957).PubMedCrossRefGoogle Scholar
  17. Crossland, J.: Chemical transmission in the central nervous system. J. Pharm. Pharmacol. 12, 1 (1960).PubMedCrossRefGoogle Scholar
  18. Crossland, J.: Biologic estimation of histamine. In: Methods med. Res., ed. Quastel, J. H. Chicago: Year Book Medical Publishers, Inc. 1961.Google Scholar
  19. Crossland, J., and J. F. Mitchell: The effect on the electrical activity of the cerebellum of a substance present in cerebellar extracts. J. Physiol. (Loud.) 132, 391 (1956).Google Scholar
  20. Davison, A. N.: Physiological role of monoamine oxidase. Physiol. Rev. 38, 729 (1958).PubMedGoogle Scholar
  21. Draskoci, M., W. Feldberg, K. Fleischhauer, and P. S. R. K. Haranath: Absorption of histamine into the blood stream on perfusion of the cerebral ventricles, and its uptake by brain tissue. J. Physiol. (Lond.) 150, 50 (1960).Google Scholar
  22. Erspamer, V.: Pharmacologically active substances of mammalian origin. In: Ann. Rev. Pharmacol., ed. Cutting, W. C. Palo Alto: Annual Reviews, Inc. 1961.Google Scholar
  23. Euler, U. S.: A specific sympathomimetic ergone in adrenergic nerve fibres (sympathin) and its relations to adrenaline and nor-adrenaline. Acta physiol. scand. 12, 73 (1946).CrossRefGoogle Scholar
  24. Euler, U. S. vox: Histamine as a specific constituent of certain autonomic nerve fibres. Acta physiol. scand. 19, 85 (1949).Google Scholar
  25. Feldberg, W., and H. Kwiatkowski: Untersuchungen über primären und sekundären Histaxninschock am arteriellen Blutdruck. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 170, 551 (1933).Google Scholar
  26. Feldberg, W., and S. L. Sherwood: Injections of drugs into the lateral ventricle of the cat. J. Physiol. (Lond.) 123, 148 (1954).Google Scholar
  27. Fuche, J., and G. Kahlson: Histamine as a stimulant to the anterior pituitary gland as judged by the lymphopenic response in normal and hypophysectomized rabbits. Acta physiol. scand. 39, 327 (1957).PubMedCrossRefGoogle Scholar
  28. Gilfoil, T. M., E. R. Hart, and A. S. Marrazzi: Cerebral synaptic inhibition by histamine. Fed. Proc. 19, 262 (1960).Google Scholar
  29. Gooszen, J. A. H., and J. Donker: Studies on histamine. VI. A study of histamine-metabolism in schizophrenic patients. Acta allerg. (Kbh.) 10, 149 (1956).CrossRefGoogle Scholar
  30. Gray, W. D., and P. L. MuNsoN: The rapidity of the adrenocorticotropic response of the pituitary to the intravenous administration of histamine. Endocrinology 48, 471 (1951).PubMedCrossRefGoogle Scholar
  31. Haley, T. J.: Pharmacological effects produced by intracerebral administration of drugs of unrelated structure to conscious mice. Arch. in Pharmacodyn. 110, 239 (1957).Google Scholar
  32. Halpern, B. N., TH. Neveu, and C. W. M. WilsoN: The distribution and fate of radioactive histamine in the rat. J. Physiol. (Lond.) 147, 437 (1959).Google Scholar
  33. Harris, G. W., D. Jacobsohn, and G. Kahlson: The occurrence of histamine in cerebral regions related to the hypophysis. Ciba Found. Colloq. Endocr. 4, 186 (1952).Google Scholar
  34. Hilton, S. M., and R. J. Schain: A search for pharmacologically active substances in fluid from the cerebral ventricles. J. Physiol. (Lond.) 157, 46P (1961).Google Scholar
  35. Holtz, P., E. Westermayn: Über die Dopadecarboxylase und Histidindecarboxylase des Nervengewebes. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 227, 538 (1956).Google Scholar
  36. Holzbauer, M., and M. Vogt: Depression by reserpine of the noradrenaline concentration in the hypothalamus of the cat. J. Neurochem. 1, 8 (1956).PubMedCrossRefGoogle Scholar
  37. Kahlson, G.: A place for histamine in normal physiology. Lancet 19601, 67Google Scholar
  38. Kahlson, G., E. Rosengren, H. Westling, and T. White: The site of increased formation of histamine in the pregnant rat. J. Physiol. (Lond.) 144, 337 (1958).Google Scholar
  39. Kaneko, Y., J. W. Mccubbin, and I. H. Page: Mechanism by which serotonin, norepinephrine and reserpine cause central vasomotor inhibition. Circulat. Res. 8, 1228 (1960).PubMedCrossRefGoogle Scholar
  40. Korn, R., and J. G. Millichap: Properties of seizures induced by histamine. Proc. Soc. exp. Biol. (N. Y.) 99, 623 (1958).Google Scholar
  41. Kwiatkowski, H.: Histamine in nervous tissue. J. Physiol. (Lond.) 102, 32 (1943).Google Scholar
  42. Paasonen, M. K., and M. Vogt: The effect of drugs on the amounts of substance P and 5-hydroxytryptamine in mammalian brain. J. Physiol. (Lond.) 131, 617 (1956).Google Scholar
  43. Pilcher, J. D., and T. Sollmann: Studies in the vasomotor centre. Xii. The action of ergot and its constituents, ergotoxin, and histamine. J. Pharmacol. exp. Ther. 6, 385 (1914–1915).Google Scholar
  44. Riley, J. F.: The mast cells, p. 13. Edinburgh and London: E. and S. Livingstone Ltd. 1959.Google Scholar
  45. Rocha E Silva, M.: Central effects produced by injection of 48!80 into the cerebral ventricles of mice. Brit. J. Pharmacol. 14, 243 (1959).PubMedGoogle Scholar
  46. Sawyer, C. H.: Rhinencephalic involvement in pituitary activation by intraventricular histamine in the rabbit under nembutal anesthesia. Amer. J. Physiol. 180, 37 (1955).PubMedGoogle Scholar
  47. Schain, R. J.: Neurohumors and other pharmacologically active substances in cerebrospinal fluid: A review of the literature. Yale J. Biol. Med. 33, 15 (1960).Google Scholar
  48. Schayer, R. W.: Formation and binding of histamine by rat tissues in vitro. Amer. J. Physiol. 187, 63 (1956a).PubMedGoogle Scholar
  49. Schayer, R. W.: Formation and binding of histamine by free mast cells of rat peritoneal fluid. Amer. J. Physiol. 186, 199 (1956b).PubMedGoogle Scholar
  50. Schayer, R. W.: Catabolism of physiological quantities of histamine in vivo. Physiol. Rev. 39, 116 (1959).PubMedGoogle Scholar
  51. Schmidt, G. W., A. STÄHeltn: Histaminempfindlichkeit und anaphylaktische Reaktionen. Z. Immun.-Forsch. 60, 222 (1929).Google Scholar
  52. Shore, P. A., A. Burkhalter, and V. H. Cohn JR.: A method for the fluorometric assay of histamine in tissues. J. Pharmacol. exp. Ther. 127, 182 (1959).PubMedGoogle Scholar
  53. Sokoloff, L.: The action of drugs on the cerebral circulation. Pharmacol. Rev. 11, 1 (1959).PubMedGoogle Scholar
  54. Strengers, TR., and J. W. Maas: Studies on histamine. IV. On free and bound histamine. Acta allerg. (Kbh.) 10, 130 (1956).CrossRefGoogle Scholar
  55. SzeberÉNyi, S., K. Kovlics: Über den Einfluß endokriner Faktoren auf den Histamingehalt des Hypothalamus der Ratte. Naturwissenschaften 46, 581 (1959).CrossRefGoogle Scholar
  56. Trendelenburg, U.: The action of histamine and pilocarpine on the superior cervical ganglion and the adrenal glands of the cat. Brit. J. Pharmacol. 9, 481 (1954).PubMedGoogle Scholar
  57. Trendelenburg, U.: Stimulation of sympathetic centers by histamine. Circulat. Res. 5, 105 (1957a).PubMedCrossRefGoogle Scholar
  58. Trendelenburg, U.: The action of histamine, pilocarpine, and 5-hydroxytryptamine on transmission through the superior cervical ganglion. J. Physiol. (Lond.) 135, 66 (1957b).Google Scholar
  59. Trendelenburg, U.: Non-nicotinic ganglion-stimulating substances. Fed. Proc. 18, 1001 (1959).PubMedGoogle Scholar
  60. Udenfriend, S., and C. R. Creveling: Localization of dopamine-i4-oxidase in brain. J. Neurochem. 4, 350 (1959).PubMedCrossRefGoogle Scholar
  61. Virno, M., S. B. Gertner, and D. Bovet: Action of histamine on the jugular venous pressure and cerebral circulation of the dog. Effects of antihistaminic drugs (pyrilamine and chlorpheniramine) and a histamine liberating agent (48/80 B. W.). J. Pharmacol. exp. Ther. 118, 63 (1956).PubMedGoogle Scholar
  62. Vogt, M.: The concentration of symphatin in different parts of the central nervous system under normal conditions and after the administration of drugs. J. Physiol. (Lond.) 123, 451 (1954).Google Scholar
  63. Vogt, M.: Catecholamines in brain. Pharmacol. Rev. 11, 483 (1959).PubMedGoogle Scholar
  64. Waton, N. G.: Studies on mammalian histidine decarboxylase. Brit. J. Pharmacol. 11, 119 (1956).PubMedGoogle Scholar
  65. Weiss, S., W. G. Lennox, and G. P. Robb: The dilator effect of histamine on the cerebral vessels in man. Proc. Soc. exp. Biol. (N. Y.) 26, 706 (1929).Google Scholar
  66. Werle, E., G. Weichen: Über das Vorkommen von Histamin in Nerven. Biochem. Z. 319, 457 (1949).Google Scholar
  67. West, G. B.: Histamine in nervous tissue. In: Metabolism of the nervous system, ed. Richter, D. London, New York, Paris, Los Angeles: Pergamon Press 1957.Google Scholar
  68. White, T.: Formation and catabolism of histamine in brain tissue in vitro. J. Physiol. (Lond.) 149, 34 (1959).Google Scholar
  69. White, T.: Formation and catabolism of histamine in cat brain in vivo. J. Physiol. (Lond.) 152, 299 (1960).Google Scholar
  70. White, T.: Inhibition of the methylation of histamine in cat brain. J. Physiol. (Lond.) 159, 191 (1961a).Google Scholar
  71. White, T.: Some effects of histamine and two histamine metabolites on the cat’s brain. J. Physiol. (Lond.) 159, 198 (1961b).Google Scholar
  72. Woolley, D. W.: (chairman). Amine oxidase inhibitors. Ann. N. Y. Acad. Sci. 80, 551 (1959).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1966

Authors and Affiliations

  • T. White

There are no affiliations available

Personalised recommendations