Chemistry of Histamine and Analogs. Relationship between Structure and Pharmacological Activity

  • Reuben G. Jones
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 18 / 1)


The first correlation of the chemical structure of histamine with its powerful physiological effects upon smooth muscle and upon blood pressure was reported by Barger and Dale (1910 a). These workers had isolated histamine from ergot and had shown it to be identical with a specimen of 4 (or 5)-(2-aminoethyl)-imidazole prepared by Ackermann (1910) by bacterial decarboxylation of histidine. Indeed, histamine had been chemically synthesized by Windaus and Vogt (1907) several years before its physiological actions were recognized. Dale and Laidlaw (1910, 1912) fully described many of the physiological effects of histamine.


Gastric Secretion Imidazole Ring Cupric Acetate Histamine Dihydrochloride Imidazole Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel, J., J., and S. Kubota: Presence of histamine (4-imidazoleethylamine) in the hypophysis cerebri and other tissues of the body and its occurrence among the hydrolytic decomposition products of proteins. J. Pharmacol. exp. Ther. 13, 243 (1919).Google Scholar
  2. Ackermann, D.: Über den bacteriellen Abbau des Histidins. Hoppe-Seylers Z. physiol. Chem. 65, 504 (1910).Google Scholar
  3. Ackermann, D.: Die Sozojodosäure als Basenfällungsmittel. Hoppe Seylers Z. physiol. Chem. 225, 46 (1934).Google Scholar
  4. Ackermann D., u. H. G. Fucus: Zur Frage des Vorkommens von Histamin im normalen Ham. HoppeSeylers Z. physiol. Chem. 259, 32 (1939).Google Scholar
  5. Ackermann D., u. M. Mohr: Präparative Sicherstellung des Vorkommens von Histamin im normalen Säugetierkörper. Hoppe-Seylers Z. physiol. Chem. 255, 75 (1938).Google Scholar
  6. Ackermann D., u. W. Wasmuth: Zur Wirkungsweise des Histamins. Hoppe-Seylers Z. physiol. Chem. 259, 28 (1939).Google Scholar
  7. AinswOrth, C.: S-ß-Aminoethyltetrazole. J. Amer. chem. Soc. 75, 5728 (1953).CrossRefGoogle Scholar
  8. AinswOrth, C. Indazole analog of tryptamine: A new synthesis of indazoles. J. Amer. chem. Soc. 79, 5242 (1957).CrossRefGoogle Scholar
  9. AinswOrth, C. Work done at Lilly Research Laboratories, unpublished (1961).Google Scholar
  10. AinswOrth, C. and R. G. Jones: 1,2,4-Triazole analogs of histamine. J. Amer. chem. Soc. 75, 4915 (1953).CrossRefGoogle Scholar
  11. AinswOrth, C. Reactions of hydrazines with gamma-pyrones. J. Amer. chem. Soc. 76, 3172 (1954). 3-Aminoalkyl-1,2,4-triazoles. J. Amer. chem. Soc. 76, 5651 (1954).CrossRefGoogle Scholar
  12. AinswOrth, C. Isomeric and nuclear-substituted beta-aminoethyl-1,2,4-triazoles. J. Amer. chem. Soc. 77, 621 (1955).CrossRefGoogle Scholar
  13. Also, K., H. Toyoura and K. Nakano. The specificity of histidine decarboxylation in Proteus morganii. II. Nippon Saikingaku Zarshi 11, 517 (1956); Chem. Abstr. 51, 14002 (1957).Google Scholar
  14. Akabori, S.: Synthese von Imidazol-derivaten aus a-Aminosäuren, I. Mitteil.: Eine neue Synthese von Desamino-histidin und ein Beitrag zur Kenntnis der Konstitution des Ergothioneins. Ber. 66, 151 (1933).Google Scholar
  15. Akabori, S., and T. Kaneko: Amino acids and their derivatives. V. 3. Synthesis of two higher homologs of histamine. J. chem. Soc. Japan 53, 207 (1932); Chem. Abstr. 27, 293 (1933).Google Scholar
  16. Akabori, S. Synthesis of imidazole derivatives from a-amino acids. Iii. Synthesis of two higher homologs of histamine. Bull, chem. Soc. Japan 11, 208 (1936); Chem. Abstr. 30, 5985 (1936).Google Scholar
  17. Akabori, S. and S. NuMano: Amino acids and their derivatives. VI. 4. A new synthesis of histamine. J. chem. Soc. Japan 53, 213 (1932); Chem. Abstr. 27, 293 (1933).Google Scholar
  18. Akabori, S. and S. NuMano: Synthesis of imidazole derivatives from a-amino acids. IV. New synthesis of histamine. Bull. chem. Soc. Japan 11, 214 (1936); Chem. Abstr. 30, 5986 (1936).Google Scholar
  19. Albert, A.: Quantitative studies of the avidity of naturally occurring substances for trace metals. Biochem. J. 50, 690 (1952).PubMedGoogle Scholar
  20. Alles, G. A., B. B. Wisegarver and M. A. Skull: Comparative physiological actions of some ß-(imidazolyl-4)alkylamines. J. Pharmacol. exp. Ther. 77, 54 (1943).Google Scholar
  21. Alphin, R. S., and T. M. Lin: Effect of histamine metabolites and histaminase inhibitor on gastric secretion in dogs. Fed. Proc. 19, 192 (1960).Google Scholar
  22. Andrews, A. C., and T. D. Lyons: Binding of histamine and antihistamine to bovine serum albumin by mediation with Cu (II). Science 126, 561 (1957).PubMedCrossRefGoogle Scholar
  23. Aruklakshana, O., J. L. Mongar and H. O. SciIld: Potentiation of pharmacological effects of histamine by histaminase inhibitors. J. Physiol. (Lond.) 123, 32 (1954).Google Scholar
  24. Ashley, J. N., and C. R. Harrington: Synthesis of 1–2-thiolhistidine. J. Chem. Soc. 1930, 2586.Google Scholar
  25. Axmacuer, F.: Über eine Farbreaktion des Histamins und Schwermetallkomplexsalze des Methylimidazols. Biochem. Z. 284, 339 (1936).Google Scholar
  26. Barger, G., and H. H. Dale: The presence in ergot and physiological activity of ß-imidazolylethylamine. J. Physiol. (Lond.) 40, Xxxviii (1910).Google Scholar
  27. Barger, G. Cclxv.-4-ß-Aminoethylglyoxaline (ß-iminazolylethylamine) and the other active principles of ergot. J. chem. Soc. 97, 2592 (1910).CrossRefGoogle Scholar
  28. Barger, G., and H. H. Dale: ß-Iminazolylethylamine, a depressor constituent of intestinal mucosa. J. Physiol. (Lond.) 41, 499 (1911).Google Scholar
  29. Best, C. H., H. H. Dale, H. W. Dudley and W. V. Thorpe: The nature of the vaso-dilator constituents of certain tissue extracts. J. Physiol. (Lond.) 62, 397 (1927).Google Scholar
  30. Borsook, H., C. L. Deasy, A. J. Hagen-Smit, G. Keighley and P. H. Lowy: Metabolism of C14-labeled glycine, L-histidine, L-leucine, and L-lysine. J. biol. Chem. 187, 839 (1950).PubMedGoogle Scholar
  31. Borsook, H., C. L. Incorporation in vitro of labeled amino acids into proteins of rabbit reticulocytes. J. biol. Chem. 196, 669 (1952).PubMedGoogle Scholar
  32. Bouthillier, L. P., and A. D’Ionio: Synthesis of radioactive DL-histidine (C1400H). Rev. can. biol. 9, 382 (1950); Chem. Abstr. 45, 6192 (1951).Google Scholar
  33. Bouthillier, L. P., and M. Goldner: The metabolism of histamine-ß-C14. Arch. Biochem. 44, 251 (1953).PubMedCrossRefGoogle Scholar
  34. Burger, A., and G. E. Ullyot: Analgesic studies. ß-Ethyl and ß-isopropylamine derivatives of pyridine and thiazole. J. Org. Chem. 12, 342 (1947).Google Scholar
  35. Campbell, K. N., J. F. Ackerman and B. K. Campbell: The preparation of ß-chloroethylamines containing heterocyclic nuclei. J. Amer. them. Soc. 71, 2905 (1949).CrossRefGoogle Scholar
  36. Chapman, N. B., and J. F. A. Williams • Optically active forms of 1-methyl-2,2’-pyridylethylamine. J. them. Soc. 1953, 2797.Google Scholar
  37. Chatterjee, B.: Cccc-Attempts to find new antimalarials. Part IV. ß-Benziminazolylethyl amine and ß-5(or 6)-ethoxybenziminazolylethylamine. J. chem. Soc. 1929, 2965.Google Scholar
  38. Clayman, C. B., J. B. Kirsher, and H. Ford: A simple oral gastric secretory stimulant (Betazole hydrochloride). J. Amer. med. Ass., 175, 908 (1961).CrossRefGoogle Scholar
  39. Clemo, G. R., T. Holmes and G. C. Leitch: The synthesis of phenyl-and pyridyl-glyoxalines. J. chem. Soc. 1938, 753.Google Scholar
  40. Craver, B. N., W. Barrett, A. Cameron and E. Herrold: Histamine-like drugs. Pharmacological actions of thirty-five derivatives of 4-methyl, 5-ethyl, or 2-substituted imidazoles. Arch. int. Pharmacodyn. 87, 33 (1951).Google Scholar
  41. Dale, H. H., and H. W. Dudley: The physiological action of N-methylhistamine and of tetrahydropyrido-3,4-iminazole (imidazolisopiperidin of FranxEL). J. Pharmacol. exp. Ther. 18, 103 (1921).Google Scholar
  42. Dale, H. H., and P. P. Laidlaw: The physiological action of ß-iminazolylethylamine. J. Physiol. (Lond.) 41, 318 (1910).Google Scholar
  43. Dale, H. H., and P. P. Laidlaw: Further observation on the action of ß-iminazolylethylamine. J. Physiol. (Loud.) 43, 182 (1912).Google Scholar
  44. Darby, W. J., H. B. Lewis and J. R. Totter: The preparation of 4 (or 5)-hydroxymethylimidazole. J. Amer. chem. Soc. 64, 463 (1942).CrossRefGoogle Scholar
  45. Diemair, W., and H. Fox: Über einige neue Azoverbindungen und Jod-derivate des Histidins und Histamins. Ber. 71, 2493 (1938).Google Scholar
  46. Ebel, F., H. Pasedacfi and O. V. ScrncKH: Ger. Pat. 805,523 (May 21, 1951); Chem. Abstr. 46, 1051 (1952).Google Scholar
  47. Eggerth, A. H.: The production of histamine by bacterial cultures. J. Bact. 37, 205 (1939).PubMedGoogle Scholar
  48. Eichler, O., u. M. HÖBel: Über die Reaktion von Kupfer (II) mit Histamin und die Wechselwirkung von Schweinserumalbumin mit Kupfer ( II)-Histamin. Unpublished (1963).Google Scholar
  49. Eichler u. G. Meyer: Über Komplexe von Histamin mit Schwermetallsalzen. Naturwissen-schaften 1948, 93.Google Scholar
  50. Ellinger, L. P., and A. A. Goldberg: A new route to iminazoles: Synthesis of 2-w-aminoalkyl derivatives of 4-methyliminazole. J. chem. Soc. 1949, 263.Google Scholar
  51. Erlenmeyer, H., u. M. MÜLler: Zur Kenntnis des ß-(4-thiazolyl)-äthylamine. Helv. chim. Acta 28, 922 (1945).CrossRefGoogle Scholar
  52. Ewins, A. J.: Ccxxxii — Some derivatives of 4(or 5)-methylglyoxaline. J. chem. Soc. 99, 2052 (1911).CrossRefGoogle Scholar
  53. Ewins, A. J.:, and F. L. Pyman: Xliii. — Experiments on the formation of 4(or 5)-ß-aminoethylglyoxaline from histidine. J. chem. Soc. 99, 339 (1911).CrossRefGoogle Scholar
  54. Fargrer, R. G., and F. L. Pyman: Xxvi. — Nitro-arylazo-and aminoglyoxalines. J. chem. Soc. 115, 217 (1919).CrossRefGoogle Scholar
  55. Fell, N., G. Rodney and D. E. Marshall: Histamine-protein complexes: Synthesis and imunologic investigation. J. Imunol. 47, 237 (1943).Google Scholar
  56. FranxEL, S., u. K. Zeimer: Über das Imidazolisopiperidin und seine Derivate. Biochem. Z. 110, 234 (1920).Google Scholar
  57. Fraser, M. M., and R. A. Raphael: A synthesis of histamine from but-2-yne-1,4-diol. J. chem. Soc. 1952, 226.Google Scholar
  58. Galat, A., and H. L. Friedman: A new method for the isolation of histamine. J. Amer. chem. Soc. 71, 3976 (1949).CrossRefGoogle Scholar
  59. Gale, E. F.: The production of amines by bacteria. I. The decarboxylation of amino acids by strains of bacterium coli. Biochem. J. 34, 392 (1940).PubMedGoogle Scholar
  60. Gale, E. F.: 4. The decarboxylation of amino acids by organisms of the groups clostridium and proteus. Biochem. J. 35, 66 (1941).PubMedGoogle Scholar
  61. Garforth, B., and F. L. Pyman: 4(5)-ß-Alkylaminoethylglyoxalines. J. chem. Soc. 1935, 489. Garreau, Y.: Quelques sels organiques d’un acide diaminoquinone-disulfonique. Compt. rend. 201, 1515 (1935).Google Scholar
  62. Gebauer-Fulnegg, E.: Zur Kenntnis der Paulyschen Diazoreaktion. Hoppe-Seylers Z. physiol. Chem. 191, 222 (1930).Google Scholar
  63. Gerngross, O.: Über einige an der Aminogruppe arylierte Derivate des 4(5)-methyl-5(4)aminomethyl-imidazoles und die Synthese des [ß-p-oxyphenyl-äthyl]-[ß-4-(5)-imidazolyläthyl]-amines. Ber. 52, 2304 (1919).Google Scholar
  64. Gerngross, O.: Über Benzoylderivate des Histidins und Histamins. Hoppe-Seylers Z. physiol. Chem. 108, 50 (1919).Google Scholar
  65. Goldberg, A. A., and W. Kelly: Synthesis of the 2-w-aminoalkyl and 2-w-sulfanilamidoalkyl derivatives of thiazole and pyrimidine. J. ehem. Soc. 1947, 1372.Google Scholar
  66. Graham, J. D. P., and R. S. Toxxs: Stereoisomerism and activity in a congener of histamine. Arch. int. Pharmacodyn. 106, 457 (1956).Google Scholar
  67. Grossman, M. I., C. Robertson and C. E. RosIere: The effect of some compounds related to histamine on gastric acid secretion. J. Pharmacol. exp. Ther. 104, 277 (1952).PubMedGoogle Scholar
  68. Hanke, M. T., and K. K. Koessler: Studies on proteinogenous amines. Xii The production of histamine and other imidazoles from histidine by the action of microorganisms. J. biol. Chem. 50, 131 (1922).Google Scholar
  69. Hares, G. B., W. C. Fernelius and B. E. Douglas: Equilibrium constants for the formation of complexes between metal ions and polyamines. J. Amer. them. Soc. 78, 1816 (1956).CrossRefGoogle Scholar
  70. Hatem, S.: Complexe histamine-argent. Compt. rend. 241, 1392 (1955).Google Scholar
  71. Hatem, S.: L’état hautement associé de l’histamine. Compt. rend. 243, 801 (1956).Google Scholar
  72. Heathcote, R. S. A.: A note on the pharmacological actions of some new derivatives of glyoxaline. Quart. J. Pharm. 12, 260 (1939).Google Scholar
  73. Heyl, D., E. Lutz, S. A. Harris and K. Folkers: Chemistry of vitamin B6. Vii. Pyridoxylidene-and pyridoxylamines. J. Amer. them. Soc. 70, 3669 (1948).CrossRefGoogle Scholar
  74. Hoffman, D. H., S. A. Harris and K. Folkers: Pyridoxal-histamine and homologs. U.S. Pat. 2,540,946 (Feb. 6, 1951); Chem. Abstr. 45, 6663 (1951).Google Scholar
  75. Holmes, F., and F. Jones: Metal complexes of histamine and some structural analogs. Part. I. J. them. Soc. 1960, 2398.Google Scholar
  76. Horn, F.: Über Chloraurate des Histamins und Imidazols. Hoppe-Seylers Z. physiol. Chem. 207, 111 (1932).Google Scholar
  77. Huebner, C. F.: Studies of imidazole compounds. V. A new and improved synthesis of 4-(2-substituted aminoethyl)imidazoles. J. Amer. ehem. Soc. 73, 4667 (1951).CrossRefGoogle Scholar
  78. Huebner R. A. Turner and C. R. Scholz: Studies of imidazole compounds. IV. Derivatives of 4-ethylimidazole. J. Amer. them. Soc. 71, 3942 (1949).CrossRefGoogle Scholar
  79. Hi7Ttel, R., T. Schneiderhan, H. Hertwig, A. Leuchs, V. Reincke, u. J. Miller: SyntheseGoogle Scholar
  80. einiger Athylamine und Alanine der Pyrazol-und 1,2,3-Triazol-Reihe. Ann 585, 115 (1954).Google Scholar
  81. Ikeda, H., and H. Ikeda: Amine polyhalophenoxides. J. Sci. Res. Inst. (Tokyo) 45, 207 (1951); Chem. Abstr. 47, 6891 (1953).Google Scholar
  82. Itallie, L. Van, and A. J. Steenhauer: Microchemical reactions to distinguish between tyramine and histamine. Pharm. Weekblad 62, 429 (1925); Chem. Abstr. 19, 1873 (1925).Google Scholar
  83. Jocelyn, P. C.: The pharmacological significance of 1-methyl-2-(ß-aminoethyl)imidazole. Arch. int. Pharmacodyn. 113, 251 (1958).Google Scholar
  84. Jones, R. G.: Studies on imidazole compounds. I. A synthesis of imidazoles with functional groups in the 2-position. J. Amer. them. Soc. 71, 383 (1949).Google Scholar
  85. Jones, R. G.: The synthesis of some amines and amino acids containing the pyrazole nucleus. J. Amer. them. Soc. 71, 3994 (1949).CrossRefGoogle Scholar
  86. Jones, R. G.: 2-ß-Aminoethylquinoline. J. Amer. them. Soc. 74, 4207 (1952).CrossRefGoogle Scholar
  87. Jones, R. G.: Work done at Lilly Research Laboratories, unpublished (1961).Google Scholar
  88. Jones, E. C. Kornfeld and K. C. Mclaughlin: The synthesis of some ß-aminoethyldiazines as histamine analogs. J. Amer. them. Soc. 72, 3539 (1950).CrossRefGoogle Scholar
  89. Jones, R. G.: The synthesis of some analogs of histamine and histidine containing the thiazole nucleus. J. Amer. ehem. Soc. 72, 4526 (1950).CrossRefGoogle Scholar
  90. Jones, R. G.: and M. J. Mann: New methods of synthesis of ß-aminoethylpyrazoles. J. Amer. them. Soc. 75, 4048 (1953).CrossRefGoogle Scholar
  91. Jones, R. G.:and K. C. Mclaughlin • Substituted ß-aminoethylpyrazoles. J. Org. Chem. 19, 1428 (1954).CrossRefGoogle Scholar
  92. Jones, R. G. Work done at Lilly Research Laboratories, unpublished (1961).Google Scholar
  93. Jones, R. G. and K. C. Mclaughlin: Studies on imidazoles. Iii. 1-Substituted analogs of histamine and histidine. J. Amer. them. Soc. 71, 2444 (1949).CrossRefGoogle Scholar
  94. Kapeller-Adler, R.: Histidine metabolism in toxaemia of pregnancy. Isolation of histamineGoogle Scholar
  95. from the urine of patients with toxaemia of pregnancy. Biochem. J. 35, 213 (1941).Google Scholar
  96. Karrer, P., M. Suter and P. Waser: L. Histidinol. Hely. chim. Acta 32, 1936 (1949).Google Scholar
  97. Kesztyus, L.: Azo compounds of histamine. Naunyn-Schmiedeberg’s Arch. exp. Path.Google Scholar
  98. Pharmak. 205, 287 (1948); Chem. Abstr. 43, 5058 (1949).Google Scholar
  99. Koessler, K. K., and M. T. Hanke: Studies on proteinogenous amines. I. The synthesis of fl-imidazolylethylamine (histamine). J. Amer. them. Soc. 40, 1716 (1918).CrossRefGoogle Scholar
  100. Koessler, K. K., and M. T. Hanke: Studies on proteinogenous amines. II. A microchemical method for estimating imidazole derivatives. J. biol. Chem. 39, 497 (1919).Google Scholar
  101. Koessler, K. K., and M. T. Hanke: Studies on proteinogenous amines. IV. The production of histamine from histidine by bacillus coli communis. J. biol. Chem. 39, 539 (1919).Google Scholar
  102. Kutscher, F.: The physiological action of a secal base and of imidazolylethylamine. Zbl. Physiol. 24, 163 (1910); Chem. Abstr. 4, 2504 (1910).Google Scholar
  103. Kutscher, W., u. O. Klamerth: Darstellung von histaminähnlichen Substanzen aus der Pyrrolreihe. Hoppe-Seylers Z. physiol. Chem. 286, 190 (1951).PubMedCrossRefGoogle Scholar
  104. Kutscher, W., u. O. Klamerth: Darstellung von histaminähnlichen Substanzen aus der Pyrrolreihe. II. Mitteilung: Die Synthese von 2-[ß-amino-äthyl]-pyrrol. Hoppe-Seylers Z. physiol. Chem. 289, 229 (1952).CrossRefGoogle Scholar
  105. Langley, W. D., and A. J. Albrecht: The identification of the flavianates of various organic bases. J. biol. Chem. 108, 729 (1935).Google Scholar
  106. Lee, H. M., W. G. DinwIddie and F. G. Henderson: Work done at Lilly Research Laboratories, unpublished (1961).Google Scholar
  107. Lee, H. M., and R. G. Jones: The histamine activity of some ß-aminoethyl heterocyclic nitrogen compounds. J. Pharmacol. exp. Ther. 95, 71 (1949).PubMedGoogle Scholar
  108. Lewis, B., E. Von Gebauer-Fuelnegg and C. J. Farmer: A spectroscopic study and assay of histamine. J. Amer. chem. Soc. 55, 2025 (1933).CrossRefGoogle Scholar
  109. Lin, T. M.: Work done at Lilly Research Laboratories, unpublished (1961).Google Scholar
  110. Lin, T. M. and R. S. AlpiuN: Comparative study of histamine and 3-ß-aminoethyl-1,2,4-triazole on gastric secretion. Fed. Proc. 18, 416 (1959).Google Scholar
  111. Lin, T. M. and F. G. Henderson and K. K. Chen: Effect of histamine derivatives and histiminase inhibitors on gastric secretion in dogs. Abstracts of Communications, Xxi Int. Congress Physiol. Sci., 1959, page 164.Google Scholar
  112. Lindell, S. E., and H. Westling: Potentiation by histaminase inhibitors of the blood pressure responses to histamine in cats. Acta physiol. stand. 37, 307 (1956).CrossRefGoogle Scholar
  113. Lindell, S. E., and H. Westling: Enzymatic oxidation of some substances related to histamine. Acta physiol. stand. 39, 370 (1957).CrossRefGoogle Scholar
  114. Ffler, K., u. M. Kirschner: Derivate des a-Picolyl-und a-Picolylmethyl-alkins [Iii. Theil]. Ber. 38, 3329 (1905).Google Scholar
  115. Lure, S. I., M. G. Kuleshova and N. K. Kochetxov: Nitrogen derivatives of imidazole (glyoxaline). J. gen. Chem. (U.S.S.R.) 9, 1933 (1939); Chem. Abstr. 34, 4387 (1940).Google Scholar
  116. Lure, S. I., O. I. Starobogatov, and E. S. NirrrsxAya: The problem of hydrolysis of acetylsulfanilic acid derivatives. Iii. J. gen. Chem. (U.S.S.R.) 11, 545 (1941); Chem. Abstr. 35, 6938 (1941).Google Scholar
  117. Mellanby, E., and F. W. Twort: On the presence of ß-imidazole-ethylamine in the intestinal wall; with a method of isolating a bacillus from the alimentary canal which converts histidine into this substance. J. Physiol. (Lond.) 45, 53 (1912).Google Scholar
  118. Merwe, P. Van Der: Über einige neue Derivate des Histamins. Hoppe-Seylers Z. physiol. Chem. 177, 301 (1928).Google Scholar
  119. Mickel, B. L., and A. C. Andrews: Complexes of histamine with Coi’, Nisi, and Cull. J. Amer. chem. Soc. 77, 323 (1955).CrossRefGoogle Scholar
  120. Mickel, B. L., and A. C. Andrews: Stability of histamine chelates. J. Amer. chem. Soc. 77, 5291 (1955).CrossRefGoogle Scholar
  121. Niemann, C., and J. T. Hays: The relation between structure and histamine-like activity. J. Amer. chem. Soc. 64, 2288 (1942).CrossRefGoogle Scholar
  122. Pauly, H.: Über die Konstitution des Histidines. Hoppe-Seylers Z. physiol. Chem. 42, 508 (1904).Google Scholar
  123. Pennimpede, F. C., I. S. M. DE Issaly and A. S. DE Issaly: Klebsiella studies. VI. Metabolism of histidine. Rev. Asoc. bioquim. argent. 22, 72 (1957); Chem Abstr. 52, 16468 (1958).Google Scholar
  124. Pliml, J, and M. Protiva: Synthetic experiments in the histamine series. Iii. New methods of the reduction of 4(5)-(cyanomethyl)-imidazole to histamine. Chem. Listy 46, 772 (1952); Chem. Abstr. 47, 11182 (1953).Google Scholar
  125. Pliml, J, and M. Protiva: Synthetic experiments in the histamine series. IV. 4(5)-(2-Benzylaminoethyl)imidazole. Chem. Listy 47, 1874 (1953); Chem. Abstr. 49, 1016 (1955).Google Scholar
  126. Pyman, F. L.: Lxxiv.-A new synthesis of 4(or 5)-ß-aminoethyl-glyoxaline, one of the active principles of ergot. J. chem. Soc. 99, 668 (1911).CrossRefGoogle Scholar
  127. Pyman, F. L.: Ccxlv. — Aminoalkylglyoxalines. J. chem. Soc. 99, 2172 (1911).CrossRefGoogle Scholar
  128. Pyman, F. L.: Lxi. — The synthesis of glyoxaline derivatives allied to pilocarpine. J. chem. Soc. 101, 530 (1912).CrossRefGoogle Scholar
  129. Pyman, F. L.: 2-Thiol-4-(5)-ß-aminoethylglyoxaline (2-thiolhistamine). J. chem. Soc. 1930, 98.Google Scholar
  130. Pyman, F. L.: Synthetic drugs. Brit. Pat. 325,151 (March 22, 1929); Chem. Abstr. 24, 3861 (1930).Google Scholar
  131. Redemann, C. E., and C. Niemann. The diliturates (5-nitrobarbiturates) of some physiologically important bases. J. Amer. chem. Soc. 62, 590 (1940).CrossRefGoogle Scholar
  132. Rey-Bellet, H., u. H. Erlenmeyer: Beiträge zum Problem der Ahnlichkeit bei Komplexverbindungen. II. Helv. chim. Acta 38, 533 (1954).Google Scholar
  133. Rocha E Silva, M.: Pharmacological properties of simple compounds of histamine with amino acids. J. Pharmacol. exp. Ther. 77, 198 (1943).Google Scholar
  134. Rosiere, C. E., and M. I. Grossman: An analog of histamine that stimulates gastric acid secretion without other actions of histamine. Science 113, 651 (1951).PubMedCrossRefGoogle Scholar
  135. Rothschild, Z., and R. W. Schayer: Synthesis and metabolism of a histamine metabolite, 1-methyl-4-(ß-aminoethyl)imidazole. Biochem. biophys. Acta (Amst) 30, 23 (1958).CrossRefGoogle Scholar
  136. Sarasin, J.: Nouvelles synthèses dans le groupe de l’imidazol. Rely. chim. Acta 6, 377 (1923).Google Scholar
  137. Schalten, S. N. R. v.: Potentiometric studies on histamine and its metal chelates. I. Ionization constants of histamine in aqueous potassium chloride solutions. Suomen Kemistilchti, 31 B, 372 (1958): Chem. Abstr. 53, 12798 (1959).Google Scholar
  138. Schayer, R. W.: Synthesis of histamine-2-C14-imidazole. J. Amer. them. Soc. 74, 2440 (1952).CrossRefGoogle Scholar
  139. Schnedorf, J. G., and A. C. IvY: Effects of methyl histamine and hydroxyethylglyoxaline on gastric secretion and blood pressure in the dog. Proc. Soc. exp. Biol. (N.Y.) 32, 777 (1935).Google Scholar
  140. Sheehan, J. C., and C. A. Robinson: The synthesis of triazole analogs of histamine and related compounds. J. Amer. them. Soc. 71, 1436 (1949).CrossRefGoogle Scholar
  141. Sheehan, J. C., and C. A. Robinson: The synthesis of phenyl-substituted triazole analogs of histamine. J. Amer. chem. Soc. 73, 1207 (1951).CrossRefGoogle Scholar
  142. Sonn, A., E. Rotes U. H. Sieg: Synthetische Versuche in der Imidazolgruppe. Ber. 57, 953 (1924).Google Scholar
  143. Sprinson, D. B., and D. Rittenberg: The metabolic reactions of carbon atom 2 of L-histidine. J. biol. Chem. 198, 655 (1952).PubMedGoogle Scholar
  144. Tabor, H., A. H. Mehler, O. Hayaisii and J. White: Urocanic acid as an intermediate in the enzymatic conversion of histidine to glutamine and formic acids. J. biol. Chem. 196, 121 (1952).PubMedGoogle Scholar
  145. Tabor, H., and E. MosEttig: Isolation of acetylhistamine from urine following oral administration of histamine. J. biol. Chem. 180, 703 (1949).PubMedGoogle Scholar
  146. Taniamushi, Y.: Synthesis of homologs of histamine and their pharmacological actions. J. Pharm. Soc. Japan 53, 1080 (1933); Chem. Abstr. 29, 7328 (1935).Google Scholar
  147. Taniamushi, Y.: Synthesis of 2-methylimidazole derivatives. II. The synthesis of 2-methyl-4,5-bis(amino-methyl)imidazole. J. Pharm. Soc. Japan 55, 1053 (1935); Chem. Abstr. 31, 6654 (1937).Google Scholar
  148. Taniamushi, Y.: Synthesis of 2-ethylimidazole derivatives. Synthesis of 2-ethyl-4,5-diaminomethyl-Google Scholar
  149. imidazole. J. Pharm. Soc. Japan 57, 1023 (1937); Chem. Abstr. 32, 3394 (1938).Google Scholar
  150. Tesar, C., and D. Rittenberg: The metabolism of L-histidine. J. biol. Chem. 170, 35 (1947).Google Scholar
  151. Turner, R. A., C. F. Huebner and C. R. ScxoLz: Studies on imidazole compounds. I.4-Methylimidazole and related compounds. J. Amer. chem. Soc. 71, 2801 (1949).CrossRefGoogle Scholar
  152. Turner, R. J.: Some new derivatives of 4-methylimidazole. J. Amer. chem. Soc. 70, 3523 (1948).CrossRefGoogle Scholar
  153. Vartiainen, A.: The action of certain new histamine derivatives. J. Pharmacol. exp. Ther. 54, 265 (1935).Google Scholar
  154. Walter,L. A., W. H. Hunt and R. J. FosBinder: ß-(2- and 4-Pyridylalkyl)amines. J. Amer. chem. Soc. 63 2771 (1941).Google Scholar
  155. Wanag, G., u. A. Dombrowski: Verwendung von 2-Nitro-indandion-(1,3) für die Isolierung und Identifizierung organischer Basen, II. Mitteilung. Ber. 75, 82 (1942).Google Scholar
  156. Weidenhagen, R., u. R. Herrmann • Eine neue Synthese von Imidazolderivaten. Ber. 68, 1953 (1935).Google Scholar
  157. Weidenhagen, R. u. H. Wegner: Über neue Abkömmlinge des Imidazols (IV. Mitteil. Über Imidazole). Ber. 70, 570 (1937).Google Scholar
  158. Weitzel, G., u. A. M. FretznoRff: Zink-Imidazol-Verbindungen. Hoppe-Seylers Z. physiol. Chem. 305, 1 (1956).CrossRefGoogle Scholar
  159. Went, I., and L. Kesztyus: Synthetic preparation of histamine antigen (histamine azobenzeneazoprotein). Orvosok Lapja Nepegeszsegugy 2, 257 (1946); Chem. Abstr. 42, 3062 (1948).Google Scholar
  160. Windaus, A., W. DÖRries u. H. Jensen: Über das Verhalten einiger aus Imidazolen bereiteter bis[Acyl-amino]-äthylen-derivate. Ber. 54, 2745 (1921).Google Scholar
  161. Windaus, A., u. W. Langebeck: Uber das Verhalten einiger aus Imidazolen bereiteter bis[Benzoylamino]-äthylen-derivate gegenüber Säure-anhydriden. Ber. 55, 3706 (1922).Google Scholar
  162. Windaus, A., u. H. Orrrz: Synthese einiger Imidazol-derivate. Ber. 44, 1721 (1911).Google Scholar
  163. Windaus, A., u. W. Vogt: Synthese des Imidazolyl-äthylamins. Ber. 40, 3691 (1907).Google Scholar
  164. Wolf, G.: The metabolism of a-C14-histidine in the intact rat. I. Radioactivity in amino acids from protein. J. biol. Chem. 200, 637 (1953).Google Scholar
  165. Yamamoto, T.: The pharmacological actions of some imidazole derivatives. Folia Pharmacol. Japan 31, 145 (1941); Chem. Abstr. 35, 5992 (1941).Google Scholar
  166. Zimmermann, W.: Uber eine spezifische Farbreaktion für Histamin. Hoppe-Seylers Z. physiol. Chem. 186, 260 (1929).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1966

Authors and Affiliations

  • Reuben G. Jones

There are no affiliations available

Personalised recommendations