Skip to main content

Translocation in Mycelia

  • Chapter

Part of the book series: The Mycota ((MYCOTA,volume 1))

Abstract

Translocation is the process by which nutrients are moved along fungal hyphae to other parts of the colony. Simple observations indicate that this is a necessary part of proper colony function. Thus, when mycelium is growing on agar, the concentration of glucose in the agar under the colony declines markedly as it moves from the margin towards the center (Robson et al. 1987). There must be translocation from the source of accumulation of nutrients at the margin through the hyphae to the center of the colony, if the latter is to function normally. Equally, any hyphae which extend into the air above a mycelium on the agar or other surface must have nutrients translocated through them in order that extension may take place.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen MF (1982) Influence of vesicular-arbuscular mycor-rhiza on water movement through Bouteloua gracilis (HBK) Lag ex Steud. New Phytol 91:191–196

    Article  Google Scholar 

  • Ames RN, Reid CPP, Porter LK, Cambardella C (1983) Hyphal uptake and transport of nitrogen from two 15N-labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol 95:381–396

    Article  Google Scholar 

  • Anderson JB, Ullrich RC (1982) Translocation in rhi-zomorphs of Armillaria mellea. Exp Mycol 6:31–40

    Article  Google Scholar 

  • Badham ER (1985) The influence of humidity upon transpiration and growth of Psilocybe cubensis. Mycologia 77:932–939

    Article  Google Scholar 

  • Brownlee C, Jennings DH (1981a) Further observations on tear or drop formation by mycelium of Serpula lacrimans. Trans Br Mycol Soc 77:33–40

    Article  Google Scholar 

  • Brownlee C, Jennings DH (1981b) The content of soluble carbohydrates and their translocation in mycelium of Serpula lacrimans. Trans Br Mycol Soc 77:611–619

    Google Scholar 

  • Brownlee C, Jennings DH (1982a) Long distance translocation in Serpula lacrimans: velocity estimates and the continuous monitoring of induced perturbations. Trans Br Mycol Soc 79:143–148

    Article  Google Scholar 

  • Brownlee C, Jennings DH (1982b) Pathway of translocation in Serpula lacrimans. Trans Br Mycol Soc 79:401–407

    Article  Google Scholar 

  • Buller AHR (1931) Researches on fungi, vol 4. Longmans Green, London

    Google Scholar 

  • Buller AHR (1933) Researches on fungi, vol 5. Longmans Green, London

    Google Scholar 

  • Cairney JWG (1991a) Rhizomorphs: organs of exploration or exploitation? The Mycologist 5:5–10

    Article  Google Scholar 

  • Cairney JWG (1991b) Structural and ontogenic study of mycorrhizal rhizomorphs. In: Varma AK, Read DJ, Norris JR (eds) Methods in microbiology, vol 23. Techniques for the Study of Mycorrhiza. Academic Press, London, pp 331–340

    Google Scholar 

  • Cairney JWG (1992) Translocation of solutes in ectomycorrhizal and saprotrophic rhizomorphs. Mycol Res 96:135–141

    Article  CAS  Google Scholar 

  • Cairney JWG, Jennings DH, Veitkamp CJ (1988) Structural differentiation in maturing rhizomorphs of Armil-laria mellea (Tricholomatales). Nova Hedwigia 46:1–25

    Google Scholar 

  • Cairney JWG, Jennings DH, Agerer R (1991) The nomenclature of fungal multi-hyphal linear aggregates. Cryptogam Bot 2/3: 246–251

    Google Scholar 

  • Callow JA, Capaccio LC, Parish G, Tinker PB (1978) Detection and estimation of polyphosphate in vesicular-arbuscular mycorrhizas. New Phytol 80:125–134

    Article  CAS  Google Scholar 

  • Canny MJ (1960) The rate of translocation. Biol Rev 35:507–532

    Article  PubMed  CAS  Google Scholar 

  • Canny MJ (1990) What becomes of the transpiration stream? New Phytol 114:341–368

    Article  Google Scholar 

  • Clarke RW, Jennings DH, Coggins CR (1980) Growth of Serpula lacrimans in relation to water potential of substrate. Trans Br Mycol Soc 75:271–280

    Article  Google Scholar 

  • Coggins CR, Jennings DH, Clarke RW (1980) Tear or drop formation by mycelium of Serpula lacrimans. Trans Br Mycol Soc 75:63–67

    Article  Google Scholar 

  • Cooper KM, Tinker PB (1978) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. II Uptake and translocation of phosphorus, zinc and sulphur. New Phytol 81:43–52

    Article  CAS  Google Scholar 

  • Cooper KM, Tinker PB (1981) Translocation in transfer of nutrients in vesicular-arbuscular mycorrhizas. IV Effect of environmental variables on movement of phosphorus. New Phytol 88:327–339

    Article  CAS  Google Scholar 

  • Cox G, Moran KJ, Sanders F, Nockolds C, Tinker PB (1980) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. III Polyphosphate granules and phosphorus translocation. New Phytol 84:649–659

    Article  CAS  Google Scholar 

  • De Silva LR, Youatt J, Gooday GW, Gow NAR (1992) Inwardly directed ionic currents in Allomyces macrogynus and other water moulds indicates sites of proton-driven nutrient transport but are incidental to tip growth. Mycol Res 96:925–931

    Article  Google Scholar 

  • Duddridge JA, Malibari A, Read DJ (1980) Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature 287: 834–836

    Article  Google Scholar 

  • Eamus D, Thompson W, Cairney JWG, Jennings DH (1985) Internal structure and hydraulic conductivity of basidiomycete translocating organs. J Exp Bot 36: 1110–1116

    Article  Google Scholar 

  • Eze JNO (1975) Translocation of phosphate in mould mycelia. New Phytol 75:579–582

    Article  Google Scholar 

  • Finlay RD, Read DJ (1986a) The structure and function of the vegetative mycelium of ectomycorrhizal plants. I Translocation of 14C-labelled carbon between plants inter-connected by a common mycelium. New Phytol 103:143–146

    Article  Google Scholar 

  • Finlay RD, Read DJ (1986b) The structure and function of the vegetative mycelium of ectomycorrhizal plants. II The uptake and distributions of phosphorus by mycelial strands inter-connecting host plants. New Phytol 103: 157–166

    Article  Google Scholar 

  • Girvin D, Thain JF (1987) Growth and translocation in mycelia of Neurospora crassa on a nutrient deficient medium. Trans Br Mycol Soc 88:237–246

    Article  CAS  Google Scholar 

  • Granlund HI, Jennings DH, Thompson W (1985) Translocation of solutes along rhizomorphs of Armillaria mellea. Trans Br Mycol Soc 84:111–119

    Article  Google Scholar 

  • Hardie K (1985) The effect of removal of extraradical hyphae on water uptake by vesicular-arbuscular mycorrhizal plants. New Phytol 101:677–684

    Article  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Holligan PM, Jennings DH (1972) Carbohydrate metabolism in the fungus Denaryphiella salina. I Changes in the levels of soluble carbohydrates during growth. New Phytol 71:569–582

    Article  CAS  Google Scholar 

  • Hornung U, Jennings DH (1981) Light and electron microscopical observations of surface mycelium of Serpula lacrimans: stages of growth and hyphal nomenclature. Nova Hedwigia 34:101–126

    Google Scholar 

  • Horwitz L (1958) Some simplified mathematical treatments of translocation in plants. Plant Physiol 33:81–93

    Article  PubMed  CAS  Google Scholar 

  • Jennings DH (1976) Transport and translocation in filamentous fungi. In: Smith JE, Berry DR (eds) The filamentous fungi, vol II. Biosynthesis and metabolism. Edward Arnold, London, pp 32–64

    Google Scholar 

  • Jennings DH (1986) Salt relations in cells, tissues and roots. In: Steward FC, Sutcliffe JF, Dale JE (eds) Plant physiology, a treatise, vol ix. Water and solutes in plants. Academic Press, Orlando, pp 225–379

    Google Scholar 

  • Jennings DH (1987) Translocation of solutes in fungi. Biol Rev 62:215–243

    Article  CAS  Google Scholar 

  • Jennings DH (1991a) The spatial aspects of fungal growth. Sci Prog Oxford 75:141–156

    Google Scholar 

  • Jennings DH (1991b) The physiology and biochemistry of the vegetative mycelium. In: Jennings DH, Bravery AF (eds) Serpula lacrymans: fundamental biology and control strategies. John Wiley, Chichester, pp 55–79

    Google Scholar 

  • Jennings DH (1991c) The role of droplets in helping to maintain a constant growth rate of aerial hyphae. Mycol Res 95:883–884

    Article  Google Scholar 

  • Jennings DH (1991d) Techniques for studying the functional aspects of rhizomorphs of wood-rotting fungi: some possible applications to ectomycorrhiza. In: Varma AK, Read DJ, Norris JR (eds) Methods in microbiology, vol 23. Techniques for the Study of Mycorrhiza. Academic Press, London, pp 309–329

    Chapter  Google Scholar 

  • Jennings DH, Thornton JD, Galpin MFJ, Coggins CR (1974) Translocation in fungi. Symp Soc Exp Biol 28: 139–156

    PubMed  Google Scholar 

  • Littlefîeld LJ (1967) Phosphorus-32 accumulation in Rhizoctonia solani sclerotia. Phytopathology 57:1053–1055

    Google Scholar 

  • Littlefield LJ, Wilcoxson RD, Sudia TW (1965a) Translocation of phosphorus-32 in Rhizoctonia solani. Phytopathology 55:536–542

    Google Scholar 

  • Littlefield LJ, Wilcoxson RD, Sudia TW (1965b) Translocation in sporophores of Lentinus tigrinus. Am J Bot 52:599–605

    Article  Google Scholar 

  • Lucas RL (1960) Transport of phosphorus in fungal mycelium. Nature 188:763–764

    Article  PubMed  CAS  Google Scholar 

  • Lucas RL (1977) The movement of nutrients through fungal mycelium. Trans Br Mycol Soc 69:1–9

    Article  Google Scholar 

  • Lyon AJE, Lucas RL (1969a) The effect of temperature on the translocation of phosphorus by Rhizopus stoloni-fer New Phytol 68:963–970

    Article  CAS  Google Scholar 

  • Lyon AJE, Lucas RL (1969b) Phosphorus metabolism of Rhizopus stolonifer and Chaetomium sp. with respect to phosphorus translocation. New Phytol 68:671–676

    Google Scholar 

  • Milne L, Cooke RC (1969) Translocation of [14C]-glucose by Rhizoctonia solani. Trans Br Mycol Soc 53:279–289

    Article  CAS  Google Scholar 

  • Monson AM, Sudia TW (1963) Translocation in Rhizoctonia solani Bot Gaz 124:440–443

    Article  Google Scholar 

  • Nuss I, Jennings DH, Veitkamp CJ (1991) Morphology of Serpula lacrymans. In: Jennings DH, Bravery AF (eds) Serpula lacrymans: fundamental biology and control strategies. John Wiley, Chichester, pp 9–38

    Google Scholar 

  • Olsson S, Jennings DH (1991a) A glass fibre filter technique for studying nutrient uptake by fungi: the technique used on colonies grown on nutrient gradients of carbon and phosphorus. Exp Mycol 15: 292–301

    Article  CAS  Google Scholar 

  • Olsson S, Jennings DH (1991b) Evidence for diffusion being the mechanism of translocation in the hyphae of three moulds. Exp Mycol 15:302–309

    Article  CAS  Google Scholar 

  • Plunkett BE (1956) The influence of factors of the aeration complex and light upon fruit body form in pure cultures of an agaric and a polypore. Ann Bot 20:563–586

    Google Scholar 

  • Plunkett BE (1958) Translocation and pileus formation in Polyporus brumalis. Ann Bot 22:237–249

    Google Scholar 

  • Read DJ, Stribley DP (1975) Diffusion and translocation in some fungal culture systems. Trans Br Mycol Soc 64:381–388

    Article  Google Scholar 

  • Robson GD, Bell SD, Kuhn PJ, Trinci APJ (1987) Glucose and penicillin concentrations in agar medium below fungal colonies. J Gen Microbiol 133:361–367

    PubMed  CAS  Google Scholar 

  • Sanders FE, Tinker PB (1973) Phosphate flow in mycor-rhizal roots. Pest Sci 4:385–395

    Article  CAS  Google Scholar 

  • Skinner MF, Bowen GD (1974) The uptake and translocation of phosphate by mycelial strands of mycor-rhizas. Soil Biol Biochem 6:53–56

    Article  CAS  Google Scholar 

  • Tanner W, Beevers H (1990) Does transpiration have an essential function in long-distance ion transport in plants? Plant Cell Environ 13:745–750

    Article  CAS  Google Scholar 

  • Thain JF, Girvin D (1987) Translocation through established mycelium of Neurospora crassa on a nutrient-free substrate. Trans Br Mycol Soc 89:45–49

    Article  Google Scholar 

  • Thompson W, Eamus D, Jennings DH (1985) Water flow through mycelium of Serpula lacrimans. Trans Br Mycol Soc 84:601–608

    Article  Google Scholar 

  • Thompson W, Brownlee C, Jennings DH, Mortimer AM (1987) Localised, cold-induced inhibition of translocation of mycelia and strands of Serpula lacrimans. J Exp Bot 38:889–899

    Article  Google Scholar 

  • Townsend BB (1954) Morphology and development of fungal rhizomorphs. Trans Br Mycol Soc 37:222–233

    Article  Google Scholar 

  • Trinci APJ, Rhighelato RC (1970) Changes in constituents and ultrastructure of hyphal compartments during autolysis of glucose-starved Penicillium chrysogenum. J Gen Microbol 60:239–249

    CAS  Google Scholar 

  • Wells JM, Boddy L (1990) Wood decay and phosphorus and fungal biomass allocation in mycelial cord systems. New Phytol 116:285–295

    Article  CAS  Google Scholar 

  • Wells JM, Hughes C, Boddy L (1990) The fate of soil-derived phosphorus in mycelial cord systems of Phan-erochaete velutina and Phallus impudicus. New Phytol 114:595–606

    Article  CAS  Google Scholar 

  • Wilcoxson RD, Subbarayadu S (1968) Translocation to and accumulation of phosphorus-32 in sclerotia. Can J Bot 46:85–88

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jennings, D.H. (1994). Translocation in Mycelia. In: Wessels, J.G.H., Meinhardt, F. (eds) Growth, Differentiation and Sexuality. The Mycota, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-11908-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11908-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-11910-5

  • Online ISBN: 978-3-662-11908-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics