Translocation in Mycelia

  • D. H. Jennings
Part of the The Mycota book series (MYCOTA, volume 1)


Translocation is the process by which nutrients are moved along fungal hyphae to other parts of the colony. Simple observations indicate that this is a necessary part of proper colony function. Thus, when mycelium is growing on agar, the concentration of glucose in the agar under the colony declines markedly as it moves from the margin towards the center (Robson et al. 1987). There must be translocation from the source of accumulation of nutrients at the margin through the hyphae to the center of the colony, if the latter is to function normally. Equally, any hyphae which extend into the air above a mycelium on the agar or other surface must have nutrients translocated through them in order that extension may take place.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen MF (1982) Influence of vesicular-arbuscular mycor-rhiza on water movement through Bouteloua gracilis (HBK) Lag ex Steud. New Phytol 91:191–196CrossRefGoogle Scholar
  2. Ames RN, Reid CPP, Porter LK, Cambardella C (1983) Hyphal uptake and transport of nitrogen from two 15N-labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol 95:381–396CrossRefGoogle Scholar
  3. Anderson JB, Ullrich RC (1982) Translocation in rhi-zomorphs of Armillaria mellea. Exp Mycol 6:31–40CrossRefGoogle Scholar
  4. Badham ER (1985) The influence of humidity upon transpiration and growth of Psilocybe cubensis. Mycologia 77:932–939CrossRefGoogle Scholar
  5. Brownlee C, Jennings DH (1981a) Further observations on tear or drop formation by mycelium of Serpula lacrimans. Trans Br Mycol Soc 77:33–40CrossRefGoogle Scholar
  6. Brownlee C, Jennings DH (1981b) The content of soluble carbohydrates and their translocation in mycelium of Serpula lacrimans. Trans Br Mycol Soc 77:611–619Google Scholar
  7. Brownlee C, Jennings DH (1982a) Long distance translocation in Serpula lacrimans: velocity estimates and the continuous monitoring of induced perturbations. Trans Br Mycol Soc 79:143–148CrossRefGoogle Scholar
  8. Brownlee C, Jennings DH (1982b) Pathway of translocation in Serpula lacrimans. Trans Br Mycol Soc 79:401–407CrossRefGoogle Scholar
  9. Buller AHR (1931) Researches on fungi, vol 4. Longmans Green, LondonGoogle Scholar
  10. Buller AHR (1933) Researches on fungi, vol 5. Longmans Green, LondonGoogle Scholar
  11. Cairney JWG (1991a) Rhizomorphs: organs of exploration or exploitation? The Mycologist 5:5–10CrossRefGoogle Scholar
  12. Cairney JWG (1991b) Structural and ontogenic study of mycorrhizal rhizomorphs. In: Varma AK, Read DJ, Norris JR (eds) Methods in microbiology, vol 23. Techniques for the Study of Mycorrhiza. Academic Press, London, pp 331–340Google Scholar
  13. Cairney JWG (1992) Translocation of solutes in ectomycorrhizal and saprotrophic rhizomorphs. Mycol Res 96:135–141CrossRefGoogle Scholar
  14. Cairney JWG, Jennings DH, Veitkamp CJ (1988) Structural differentiation in maturing rhizomorphs of Armil-laria mellea (Tricholomatales). Nova Hedwigia 46:1–25Google Scholar
  15. Cairney JWG, Jennings DH, Agerer R (1991) The nomenclature of fungal multi-hyphal linear aggregates. Cryptogam Bot 2/3: 246–251Google Scholar
  16. Callow JA, Capaccio LC, Parish G, Tinker PB (1978) Detection and estimation of polyphosphate in vesicular-arbuscular mycorrhizas. New Phytol 80:125–134CrossRefGoogle Scholar
  17. Canny MJ (1960) The rate of translocation. Biol Rev 35:507–532PubMedCrossRefGoogle Scholar
  18. Canny MJ (1990) What becomes of the transpiration stream? New Phytol 114:341–368CrossRefGoogle Scholar
  19. Clarke RW, Jennings DH, Coggins CR (1980) Growth of Serpula lacrimans in relation to water potential of substrate. Trans Br Mycol Soc 75:271–280CrossRefGoogle Scholar
  20. Coggins CR, Jennings DH, Clarke RW (1980) Tear or drop formation by mycelium of Serpula lacrimans. Trans Br Mycol Soc 75:63–67CrossRefGoogle Scholar
  21. Cooper KM, Tinker PB (1978) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. II Uptake and translocation of phosphorus, zinc and sulphur. New Phytol 81:43–52CrossRefGoogle Scholar
  22. Cooper KM, Tinker PB (1981) Translocation in transfer of nutrients in vesicular-arbuscular mycorrhizas. IV Effect of environmental variables on movement of phosphorus. New Phytol 88:327–339CrossRefGoogle Scholar
  23. Cox G, Moran KJ, Sanders F, Nockolds C, Tinker PB (1980) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. III Polyphosphate granules and phosphorus translocation. New Phytol 84:649–659CrossRefGoogle Scholar
  24. De Silva LR, Youatt J, Gooday GW, Gow NAR (1992) Inwardly directed ionic currents in Allomyces macrogynus and other water moulds indicates sites of proton-driven nutrient transport but are incidental to tip growth. Mycol Res 96:925–931CrossRefGoogle Scholar
  25. Duddridge JA, Malibari A, Read DJ (1980) Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature 287: 834–836CrossRefGoogle Scholar
  26. Eamus D, Thompson W, Cairney JWG, Jennings DH (1985) Internal structure and hydraulic conductivity of basidiomycete translocating organs. J Exp Bot 36: 1110–1116CrossRefGoogle Scholar
  27. Eze JNO (1975) Translocation of phosphate in mould mycelia. New Phytol 75:579–582CrossRefGoogle Scholar
  28. Finlay RD, Read DJ (1986a) The structure and function of the vegetative mycelium of ectomycorrhizal plants. I Translocation of 14C-labelled carbon between plants inter-connected by a common mycelium. New Phytol 103:143–146CrossRefGoogle Scholar
  29. Finlay RD, Read DJ (1986b) The structure and function of the vegetative mycelium of ectomycorrhizal plants. II The uptake and distributions of phosphorus by mycelial strands inter-connecting host plants. New Phytol 103: 157–166CrossRefGoogle Scholar
  30. Girvin D, Thain JF (1987) Growth and translocation in mycelia of Neurospora crassa on a nutrient deficient medium. Trans Br Mycol Soc 88:237–246CrossRefGoogle Scholar
  31. Granlund HI, Jennings DH, Thompson W (1985) Translocation of solutes along rhizomorphs of Armillaria mellea. Trans Br Mycol Soc 84:111–119CrossRefGoogle Scholar
  32. Hardie K (1985) The effect of removal of extraradical hyphae on water uptake by vesicular-arbuscular mycorrhizal plants. New Phytol 101:677–684CrossRefGoogle Scholar
  33. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  34. Holligan PM, Jennings DH (1972) Carbohydrate metabolism in the fungus Denaryphiella salina. I Changes in the levels of soluble carbohydrates during growth. New Phytol 71:569–582CrossRefGoogle Scholar
  35. Hornung U, Jennings DH (1981) Light and electron microscopical observations of surface mycelium of Serpula lacrimans: stages of growth and hyphal nomenclature. Nova Hedwigia 34:101–126Google Scholar
  36. Horwitz L (1958) Some simplified mathematical treatments of translocation in plants. Plant Physiol 33:81–93PubMedCrossRefGoogle Scholar
  37. Jennings DH (1976) Transport and translocation in filamentous fungi. In: Smith JE, Berry DR (eds) The filamentous fungi, vol II. Biosynthesis and metabolism. Edward Arnold, London, pp 32–64Google Scholar
  38. Jennings DH (1986) Salt relations in cells, tissues and roots. In: Steward FC, Sutcliffe JF, Dale JE (eds) Plant physiology, a treatise, vol ix. Water and solutes in plants. Academic Press, Orlando, pp 225–379Google Scholar
  39. Jennings DH (1987) Translocation of solutes in fungi. Biol Rev 62:215–243CrossRefGoogle Scholar
  40. Jennings DH (1991a) The spatial aspects of fungal growth. Sci Prog Oxford 75:141–156Google Scholar
  41. Jennings DH (1991b) The physiology and biochemistry of the vegetative mycelium. In: Jennings DH, Bravery AF (eds) Serpula lacrymans: fundamental biology and control strategies. John Wiley, Chichester, pp 55–79Google Scholar
  42. Jennings DH (1991c) The role of droplets in helping to maintain a constant growth rate of aerial hyphae. Mycol Res 95:883–884CrossRefGoogle Scholar
  43. Jennings DH (1991d) Techniques for studying the functional aspects of rhizomorphs of wood-rotting fungi: some possible applications to ectomycorrhiza. In: Varma AK, Read DJ, Norris JR (eds) Methods in microbiology, vol 23. Techniques for the Study of Mycorrhiza. Academic Press, London, pp 309–329CrossRefGoogle Scholar
  44. Jennings DH, Thornton JD, Galpin MFJ, Coggins CR (1974) Translocation in fungi. Symp Soc Exp Biol 28: 139–156PubMedGoogle Scholar
  45. Littlefîeld LJ (1967) Phosphorus-32 accumulation in Rhizoctonia solani sclerotia. Phytopathology 57:1053–1055Google Scholar
  46. Littlefield LJ, Wilcoxson RD, Sudia TW (1965a) Translocation of phosphorus-32 in Rhizoctonia solani. Phytopathology 55:536–542Google Scholar
  47. Littlefield LJ, Wilcoxson RD, Sudia TW (1965b) Translocation in sporophores of Lentinus tigrinus. Am J Bot 52:599–605CrossRefGoogle Scholar
  48. Lucas RL (1960) Transport of phosphorus in fungal mycelium. Nature 188:763–764PubMedCrossRefGoogle Scholar
  49. Lucas RL (1977) The movement of nutrients through fungal mycelium. Trans Br Mycol Soc 69:1–9CrossRefGoogle Scholar
  50. Lyon AJE, Lucas RL (1969a) The effect of temperature on the translocation of phosphorus by Rhizopus stoloni-fer New Phytol 68:963–970CrossRefGoogle Scholar
  51. Lyon AJE, Lucas RL (1969b) Phosphorus metabolism of Rhizopus stolonifer and Chaetomium sp. with respect to phosphorus translocation. New Phytol 68:671–676Google Scholar
  52. Milne L, Cooke RC (1969) Translocation of [14C]-glucose by Rhizoctonia solani. Trans Br Mycol Soc 53:279–289CrossRefGoogle Scholar
  53. Monson AM, Sudia TW (1963) Translocation in Rhizoctonia solani Bot Gaz 124:440–443CrossRefGoogle Scholar
  54. Nuss I, Jennings DH, Veitkamp CJ (1991) Morphology of Serpula lacrymans. In: Jennings DH, Bravery AF (eds) Serpula lacrymans: fundamental biology and control strategies. John Wiley, Chichester, pp 9–38Google Scholar
  55. Olsson S, Jennings DH (1991a) A glass fibre filter technique for studying nutrient uptake by fungi: the technique used on colonies grown on nutrient gradients of carbon and phosphorus. Exp Mycol 15: 292–301CrossRefGoogle Scholar
  56. Olsson S, Jennings DH (1991b) Evidence for diffusion being the mechanism of translocation in the hyphae of three moulds. Exp Mycol 15:302–309CrossRefGoogle Scholar
  57. Plunkett BE (1956) The influence of factors of the aeration complex and light upon fruit body form in pure cultures of an agaric and a polypore. Ann Bot 20:563–586Google Scholar
  58. Plunkett BE (1958) Translocation and pileus formation in Polyporus brumalis. Ann Bot 22:237–249Google Scholar
  59. Read DJ, Stribley DP (1975) Diffusion and translocation in some fungal culture systems. Trans Br Mycol Soc 64:381–388CrossRefGoogle Scholar
  60. Robson GD, Bell SD, Kuhn PJ, Trinci APJ (1987) Glucose and penicillin concentrations in agar medium below fungal colonies. J Gen Microbiol 133:361–367PubMedGoogle Scholar
  61. Sanders FE, Tinker PB (1973) Phosphate flow in mycor-rhizal roots. Pest Sci 4:385–395CrossRefGoogle Scholar
  62. Skinner MF, Bowen GD (1974) The uptake and translocation of phosphate by mycelial strands of mycor-rhizas. Soil Biol Biochem 6:53–56CrossRefGoogle Scholar
  63. Tanner W, Beevers H (1990) Does transpiration have an essential function in long-distance ion transport in plants? Plant Cell Environ 13:745–750CrossRefGoogle Scholar
  64. Thain JF, Girvin D (1987) Translocation through established mycelium of Neurospora crassa on a nutrient-free substrate. Trans Br Mycol Soc 89:45–49CrossRefGoogle Scholar
  65. Thompson W, Eamus D, Jennings DH (1985) Water flow through mycelium of Serpula lacrimans. Trans Br Mycol Soc 84:601–608CrossRefGoogle Scholar
  66. Thompson W, Brownlee C, Jennings DH, Mortimer AM (1987) Localised, cold-induced inhibition of translocation of mycelia and strands of Serpula lacrimans. J Exp Bot 38:889–899CrossRefGoogle Scholar
  67. Townsend BB (1954) Morphology and development of fungal rhizomorphs. Trans Br Mycol Soc 37:222–233CrossRefGoogle Scholar
  68. Trinci APJ, Rhighelato RC (1970) Changes in constituents and ultrastructure of hyphal compartments during autolysis of glucose-starved Penicillium chrysogenum. J Gen Microbol 60:239–249Google Scholar
  69. Wells JM, Boddy L (1990) Wood decay and phosphorus and fungal biomass allocation in mycelial cord systems. New Phytol 116:285–295CrossRefGoogle Scholar
  70. Wells JM, Hughes C, Boddy L (1990) The fate of soil-derived phosphorus in mycelial cord systems of Phan-erochaete velutina and Phallus impudicus. New Phytol 114:595–606CrossRefGoogle Scholar
  71. Wilcoxson RD, Subbarayadu S (1968) Translocation to and accumulation of phosphorus-32 in sclerotia. Can J Bot 46:85–88CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • D. H. Jennings
    • 1
  1. 1.Department of Genetics and MicrobiologyUniversity of LiverpoolLiverpoolUK

Personalised recommendations