Skip to main content

Electromagnetic Waves in a Homogeneous Medium

  • Chapter

Part of the Die Grundlehren der mathematischen Wissenschaften book series (GL,volume 155)

Abstract

We turn now to a systematic study of the Maxwell equations

$$ \nabla \times \mathfrak{H} + i\omega \varepsilon \mathfrak{E} = \mathfrak{J};\nabla \times \mathfrak{E} - i\omega \mu \mathfrak{H} = - \mathfrak{J}'. $$

Keywords

  • Vector Field
  • Electromagnetic Wave
  • Boundary Curve
  • Homogeneous Medium
  • Surface Current

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-11773-6_5
  • Chapter length: 89 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-662-11773-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 1969 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, C. (1969). Electromagnetic Waves in a Homogeneous Medium. In: Foundations of the Mathematical Theory of Electromagnetic Waves. Die Grundlehren der mathematischen Wissenschaften, vol 155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-11773-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11773-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-11775-0

  • Online ISBN: 978-3-662-11773-6

  • eBook Packages: Springer Book Archive