Skip to main content

Part of the book series: Applications of Mathematics ((SMAP,volume 26))

  • 1095 Accesses

Abstract

Chapter 1 introduced the θ t -framework, a convenient formalism for the study of point processes and stochastic processes which are jointly stationary. In Chapter 2, it was shown that the house is not empty but shelters a number of stationary queueing systems. In the stable case, coupling arguments often show convergence in variation of an initially non-stationary state to the stationary state obtained by a construction of the Loynes type. Thanks to the existence of construction points, from which secondary processes (such as the congestion process in G/G/1/∞) can be obtained from the stationary state (the workload process in G/G/1/∞), the convergence in variation of the secondary processes is a consequence of the same phenomenon for the stationary state. This state of things allows one to obtain the basic formulas of queueing theory concerning limit processes directly on the stationary system, in the θ t -framework. This separates the task of obtaining formulas from that of obtaining limit distributions, and enables one to give short and elementary proofs of the classical formulas and results of queueing theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical Comments

  1. Little, J. (1961) A Proof for the Queueing Formula L = AT Oper. Res., 9, pp. 383–387.

    MathSciNet  MATH  Google Scholar 

  2. Whitt, W. (1991) A Review of L = ÀW and Extensions, Queueing Syst. Theory Appl., 9, pp. 235–268.

    Google Scholar 

  3. Franken, P., König, D., Arndt, U. and Schmidt, V. (1981) Queues and Point Processes, Akademie-Verlag, Berlin (American edition: Wiley, New York, 1982 ).

    Google Scholar 

  4. Wolff, R.W. (1989) Stochastic Modeling and the Theory of Queues, Prentice-Hall, Englewood Cliffs, N.J.

    MATH  Google Scholar 

  5. Halfin, S and Whitt, W. (1989) An Extremal Property of the FIFO Discipline via and Ordinal Version of L = AW, Stoch. Models, 5, pp. 515–529.

    Article  MathSciNet  MATH  Google Scholar 

  6. Miyazawa, M. (1994) Rate Conservation Laws: a Survey, Queueing Syst. Theory Appl., 15, pp. 1–58.

    Google Scholar 

  7. Miyazawa, M. (1994) Palm Calculus for a Process with a Stationary Random Measure and Its Applications to Fluid Queues, Queueing Syst. Theory Appl., 17, pp. 183–211.

    Google Scholar 

  8. Kella, O. and Whitt, W. (1996) Stability and Structural Properties of Stochastic Storage Networks, J. Appl. Probab. 33, pp. 1169–1180.

    Google Scholar 

  9. Konstantopoulos, T. and Last, G. (2000) On the Dynamics and Performance of Stochastic Fluid Systems, J. Appl. Probab., 37, 3, pp. 652–667.

    Google Scholar 

  10. Schassberger, R. (1977) Insensitivity of Steady State Distribution of Generalized Semi-Markov Processes I, Ann. Probab., 5, pp. 87–99.

    Google Scholar 

  11. Schassberger, R. (1978) Insensitivity of Steady State Distribution of Generalized Semi-Markov Processes II, Ann. Probab., 6, pp. 85–93.

    Google Scholar 

  12. Schassberger, R. (1978) Insensitivity of Steady State Distribution of Generalized Semi-Markov Processes with Speeds, Adv. Appl. Probab., 10, pp. 836–851.

    Google Scholar 

  13. Jansen, U., König, D. and Nawrotzki, K. (1979). A Criterion of Insensitivity for a Class of Queueing Systems with Random Marked Point Processes, Math. Operationsforsch. Stat., Ser. Optimization, 10, pp. 379–403.

    Google Scholar 

  14. Brumelle, D. (1971) On the Relation Between Customer and Time Average in Queues, J. Appl. Probab., 2, pp. 508–520.

    Google Scholar 

  15. Mecke, J. (1967) Stationäre zufällige Masse auf lokal kompakten Abelschen Gruppen, Z. Wahrsch Verw. Gebiete, 9, pp. 36–58.

    Google Scholar 

  16. Baccelli, F. and Brémaud, P. (1993) Virtual Customer in Sensitivity Analysis via Campbell’s Formula for Point Processes, Adv. Appl. Probab., 25, pp. 221–234.

    Google Scholar 

  17. Reiman, M.I. and Simon, B. (1989) Open Queueing Systems in Light Traffic, Math. Oper. Res., 14, 1, pp. 26–59.

    Google Scholar 

  18. Blaszczyszyn, B. (1995) Factorial Moment Expansion for Stochastic Systems, Stochastic Process. Appl., 56, pp. 321–335.

    Google Scholar 

  19. Kalähne, U. (1976) Existence, Uniqueness and Some Invariance Properties of Stationary Distributions for General Single Server Queues, Math. Operationsforsch. Stat. 7, pp. 557–575.

    Google Scholar 

  20. Heyman, D. and Sobel, M (1982) Stochastic Models in Operations Research ( I, II), McGraw Hill, New York.

    MATH  Google Scholar 

  21. Brumelle, D. (1972) A Generalization of L = ATV to Moments of Queue Length and Waiting Times, Oper. Res., 20, pp. 1127–1136.

    Google Scholar 

  22. Wolff, R.W. (1970) Work Conserving Priorities, J. Appl. Probab., 7, pp. 327–337.

    Google Scholar 

  23. Kleinrock, L. ( 1975, 1976) Queueing Systems (I, I I ), John Wiley and Sons, New York.

    Google Scholar 

  24. Keilson, J. (1979) Markov Chain Models — Rarity and Exponentiality, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  25. Aldous, D. (1989) Probability Approximations via the Poisson Clumping Heuristic, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  26. Baccelli, F. and MacDonald, D. (2000) Rare Events for Stationary Processes, Stochastic Process. Appl., 89, pp. 141–173.

    Google Scholar 

  27. Brémaud, P. (1989) Characteristics of Queueing Systems Observed at Events and the Connection Between Stochastic Intensity and Palm Probabilities, Queueing Syst. Theory Appl., 5, pp. 99–112.

    Google Scholar 

  28. Papangelou, F. (1972) Integrability of Expected Increments and a Related Random Change of Time Scale, Transactions American Mathematical Society, 165, pp. 483–506.

    Google Scholar 

  29. König, D. and Schmidt, V. (1980) Imbedded and Non-imbedded Stationary Characteristics of Queueing Systems with Varying Service Rate and Point Process, J. Appl. Probab., 17, pp. 753–767.

    Google Scholar 

  30. Mitrani, I. (1987) Modeling of Computer and Communications Systems,Cambridge University Press.

    Google Scholar 

  31. Brémaud, P., Kannurpatti, R. and Mazumdar, R. (1992) Events And Time Averages: A Review, Adv. Appl. Probab., 24, pp. 377–411.

    Google Scholar 

  32. Brémaud, P. (1981) Point Processes and Queues: Martingale Dynamics, Springer—Verlag, New York.

    Book  MATH  Google Scholar 

  33. Lazar, A. and Ferrandiz, J. (1990) Rate Conservation for Stationary Point Processes, J. Appl. Probab., 28, pp. 146–158.

    Google Scholar 

  34. Walrand, J. (1988) An Introduction to Queueing Networks, Prentice-Hall, Englewood Cliffs, N.J.

    MATH  Google Scholar 

  35. Brill, P.H. and Posner, M.J.M (1977) Level Crossings in Point Process Applied to Queues: Single Server Case, Oper. Res., 25, pp. 662–674.

    Google Scholar 

  36. Lazar, A. and Ferrandiz, J. (1990) Rate Conservation for Stationary Point Processes, J. Appl. Probab., 28, pp. 146–158.

    Google Scholar 

  37. Walrand, J. (1988) An Introduction to Queueing Networks, Prentice-Hall, Englewood Cliffs, N.J.

    MATH  Google Scholar 

  38. Brill, P.H. and Posner, M.J.M (1977) Level Crossings in Point Process Applied to Queues: Single Server Case, Oper. Res., 25, pp. 662–674.

    Google Scholar 

  39. Brémaud, P. and Jacod, J. (1977) Processus ponctuels et martingales: résultats récents sur la modélisation et le filtrage, Adv. Appl. Probab., 9, pp. 362–416.

    Google Scholar 

  40. Kella, O. and Whitt, W. (1991) Queues with Server Vacations and Lévy Processes with Secondary Jump Input, Ann. Appl. Probab., 1, pp. 104–117.

    Google Scholar 

  41. Fuhrmann, S.W. and Cooper, R.B. (1985) Stochastic Decomposition in the M/GI/1 Queue with Generalized Vacations, Oper. Res., 33, pp. 1117–1129.

    Google Scholar 

  42. Doshi, B.T. (1986) Queueing Systems with Vacations — A survey, Queueing Syst. Theory Appl., 5, pp. 99–112.

    Google Scholar 

  43. Cobham, A. (1954) Priority Assignment in Waiting Line Problems, Oper. Res., 2, pp. 470–76.

    Google Scholar 

  44. Phipps, T. (1956) Machine Repair as a Priority Waiting Line Problem, Oper. Res., 4, pp. 76–85.

    Google Scholar 

  45. Kleinrock, L. ( 1975, 1976) Queueing Systems (I, I I ), John Wiley and Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baccelli, F., Brémaud, P. (2003). Formulas. In: Elements of Queueing Theory. Applications of Mathematics, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-11657-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11657-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08537-6

  • Online ISBN: 978-3-662-11657-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics