Skip to main content

Pathophysiological mechanisms in cardiac insufficiency induced by chronic pressure overload — an attempt to analyze specific factors in animal experiment

  • Conference paper
Book cover Controversial issues in cardiac pathophysiology

Summary

Experimental results obtained from studies on Goldblatt rats and spontaneously hypertensive rats as well as theoretical considerations render possible an approximate analysis and evaluation of the relative significance of specific factors at different levels of the heart for the manifestation of cardiac failure under chronic pressure overload.

In our experimental models congestive failure was never observed independently of structural dilatation. Thus, as a rule dilatation had already set in before symptoms of heart failure became manifest. However, at moderate dilatation of the ventricle, e. g., at double the end-diastolic volume, the geometrical state per se cannot be the cause of hydropic decompensation whereas extreme dilatation would, in principle, cause cardiac pumping failure even in the absence of any impairment of myocardial “contractility”.

Generally, a more or less marked impairment of myocardial contractile capability was found, which exceeded the effects due to the altered isoenzyme pattern of myosin. As a rule, a reduction in myocardial “contractility” could be ascertained before a marked degree of dilatation was reached.

Diffuse fibrosis impairs the contractile capability of the myocardium and certainly contributes to the manifestation of heart insufficiency; although, as a rule, it should not be the main cause.

The adaptive transformation of myocardium towards a slower muscle (isoenzyme pattern of myosin; sarcoplasmatic reticulum) as such does not lead to resting insufficiency, not even under persisting pressure load. Further investigations on processes of excitation-mechanical coupling in the advanced stage of cardiac overload are indicated.

The absence of sympathetic support to the heart, e. g., following blockade of β-adrenergic receptors can, in the advanced stage, elicit a transition from the stage of pre-insufficiency to manifest failure. However, this was only observed when dilatation had already occurred.

A network of factors are responsible for cardiac insufficiency due to pressure overloading, whereby the respective significance of each component varies, depending on the experimental model used.

This study was supported by the Deutsche Forschungsgemeinschaft (Ja 172/12-1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpert NR, Gordon MS (1962) Myofibrillar adenosine triphosphatase activity in congestive heart failure. Am J Physiol 202: 940–946

    PubMed  CAS  Google Scholar 

  2. Alpert NR, Mulieri LA (1982) Increased myothermal economy of isometric force generation in compensated cardiac hypertrophy induced by pulmonary artery constriction in the rabbit. Circ Res 50: 491–500

    Article  PubMed  CAS  Google Scholar 

  3. Aschoff L (1934) Über die nicht gefäßbedingten Schädigungen des Herzmuskels. In: Hrsg Vereinigung der Bad Nauheimer Ärzte (eds), Klinik der Erkrankungen des Herzmuskels. Steinkopff Verlag, Dresden, pp 14–28

    Google Scholar 

  4. Braunwald E, Ross J, Sonnenblick EH (1967) Mechanisms of contraction of the normal and failing heart. Little, Brown and Company, Boston

    Google Scholar 

  5. Brenner B, Jacob R (1980) Calcium activation and maximum unloaded shortening velocity. Investigations on glycerinated skeletal and heart muscle preparations. Basic Res Cardiol 75: 40–46

    Article  PubMed  CAS  Google Scholar 

  6. Büchner F, Weyland R (1968) Die Insuffizienz des hypertrophierten Herzmuskels im Lichte seiner Narbenbilder. Urban & Schwarzenberg, München Berl in Wien

    Google Scholar 

  7. Bürger SB, Strauer BE (1981) Left ventricular hypertrophy in chronic pressure load due to spontaneous essential hypertension. I. Left ventricular function, left ventricular geometry and wall stress. In: Strauer BE (ed), The Heart in Hypertension. Springer-Verlag, Berlin Heidelberg New York, pp 13–35

    Chapter  Google Scholar 

  8. Ebrecht G, Rupp H, Jacob R (1982) Alterations of mechanical parameters in chemically skinned preparations of rat myocardium as a function of isoenzyme pattern of myosin. Basic Res Cardiol 77: 220–234

    Article  PubMed  CAS  Google Scholar 

  9. Fleckenstein A (1968) Experimentelle Pathologie der akuten und chronischen Herzinsuffizienz. Verh dtsch Ges Kreist Forsch 34: 15–34

    CAS  Google Scholar 

  10. Grossman W, Carabello BA, Ganther S, Fifer MA (1983) Ventricular wall stress and the development of cardiac hypertrophy and failure. In: Alpert NR (ed) Myocardial hypertrophy and failure. Raven Press, New York, pp 1–18

    Google Scholar 

  11. Grothe J, Schömerich P (1985) Herzinsuffizienz. In: Bock HE, Kaufmann W, Lohr GW (eds) Pathophysiologie. Thieme, Stuttgart, pp 326–337

    Google Scholar 

  12. Gülch RW (1980) The effect of elevated chronic loading on the action potential of mammalian myocardium. J Mol Cell Cardiol 12: 415–520

    Article  PubMed  Google Scholar 

  13. Gulch RW, Jacob R (1975) Length-tension diagram and force-velocity relations of mammalian cardiac muscle under steady-state conditions. Pflügers Arch 355: 331–346

    Article  PubMed  CAS  Google Scholar 

  14. Harris P (1983) Evolution and the cardiac patient. Cardiovasc Res 17 (No 6): 313–319; 17 (No 7): 373–378; 17 (No 8 ): 437–445

    Google Scholar 

  15. Hatt PY, Jouannot P, Moravec J, Swynghedauw B (1974) Current trends in heart hypertrophy. Basic Res Cardiol 69: 479–483

    Article  PubMed  CAS  Google Scholar 

  16. Heilmann C, Lindl T, Müller W, Pette D (1980) Characterization of cardiac microsomes from spontaneously hypertonic rats. Basic Res Cardiol 75: 92–96

    Article  PubMed  CAS  Google Scholar 

  17. Hepp A, Hansis M, Gulch R, Jacob R (1974) Left ventricular isovolumetric pressure volume relations, “diastolic tone”, and contractility in the rat heart after physical training. Basic Res Cardiol 69: 516–532

    Article  PubMed  CAS  Google Scholar 

  18. Holubarsch Ch, Holubarsch T, Jacob R, Medugorac I, Thiedemann KU (1983) Passive elastic properties of myocardium in different models and stages of hypertrophy: A study comparing mechanical, chemical, and morphometric parameters. In: Alpert NR (ed), Myocardial Hypertrophy and Failure, Vol 7. Raven Press New York, pp 323–336

    Google Scholar 

  19. Hort W (1977) Spezielle Pathologie and Anatomie. Kreislauforgane. In: Eder M, Gedigk P (eds), Lehrbuch der Allgemeinen Pathologie and der Pathologischen Anatomie. Springer-Verlag, Berlin Heidelberg New York, pp 314–360

    Google Scholar 

  20. Jacob R (1983) Chronic reactions of myocardium at the myofibrillar level. Reflections on “adaptation” and “disease” based on the biology of long-term cardiac overload. In: Jacob R, Gülch RW, Kissling G (eds), Cardiac adaptation to hemodynamic overload, training and stress. Steinkopff Verlag Darmstadt, pp 3–24

    Google Scholar 

  21. Jacob R, Ebrecht G, Kämmereit A, Medugorac I, Wendt-Gallitelli MF (1977) Myocardial function in different models of cardiac hypertrophy. An attempt at correlating mechanical, biochemical and morophological parameters. Basic Res Cardiol 72: 160–167

    Article  PubMed  CAS  Google Scholar 

  22. Jacob R, Ebrecht G, Holubarsch Ch, Rupp H, Kissling G (1983) Mechanics and energetics in cardiac hypertrophy as related to the isoenzyme pattern of myosin. In: Alpert NR (ed), Myocardial Hypertrophy and Failure. Raven Press, New York, pp 553–569

    Google Scholar 

  23. Jacob R, Kissling G (1981) Left ventricular dynamics and myocardial function in Goldblatt hypertension of the rat. Biochemical, morphological and electrophysiological correlates. In: Strauer BE (ed), The Heart in Hypertension. Springer-Verlag, Berlin Heidelberg New York, pp 89–106

    Chapter  Google Scholar 

  24. Jacob R, Kissling G, Ebrecht G, Holubarsch Ch, Medugorac I, Rupp H (1983) Adaptive and pathological alterations in experimental cardiac hypertrophy. In: Chazov E, Saks V, Rona G (eds), Advan Myocardiol 4: 55–77 Plen Publish Corporation

    Google Scholar 

  25. Jacob R, Kissling G, Ebrecht G, Jörg E, Rupp H, Takeda N (1984) Cardiac alterations at the myofibrillar level: Is a redistribution of the myosin isoenzyme pattern decisive for cardiac failure in hemodynamic overload? Eur Heart J 5: (Suppl F)

    Google Scholar 

  26. Kämmereit A, Jacob R (1979) Alterations in rat myocardial mechanics under Goldblatt hypertension and experimental aortic stenosis. Basic Res Cardiol 74: 389–405

    Article  PubMed  Google Scholar 

  27. Katz AM (1977) Physiology of the heart. Raven Press, New York

    Google Scholar 

  28. Kaufmann RL, Homburger H, Wirth H (1971) Disorder in excitation-contraction coupling of cardiac muscle from cats with experimentally produced right ventricular hypertrophy. Circ Res 28: 346–357

    Article  PubMed  CAS  Google Scholar 

  29. Kissling G, Gassenmaier T, Wendt-Gallitelli MF, Jacob R (1977) Pressure-volume relations, elastic modulus, and contractile behaviour of the hypertrophied left ventricle of rats with Goldblatt II hypertension. Pflügers Arch 369: 213

    Article  PubMed  CAS  Google Scholar 

  30. Kissling G, Rupp H, Malloy L, Jacob R (1982) Alterations in cardiac oxygen consumption under chronic pressure overload. Significance of the isoenzyme pattern of myosin. Basic Res Cardiol 77: 255–269

    Article  PubMed  CAS  Google Scholar 

  31. Linzbach AJ (1960) Heart failure from the point of view of quantitative anatomy. Amer J Cardiol 5: 370–382

    Article  PubMed  CAS  Google Scholar 

  32. Meerson FS (1976) Insufficiency of hypertrophied heart. Basic Res Cardiol 71: 343–354

    Article  PubMed  CAS  Google Scholar 

  33. Medugorac I (1980) Collagen content in different areas of normal and hypertrophied rat myocardium. Cardiovasc Res 14: 551–554

    Article  PubMed  CAS  Google Scholar 

  34. Mirsky I (1974) Review of various theories for the evaluation of left ventricular wall stress. In: Mirsky I, Ghista DN, Sandler H (eds), Cardiac Mechanics. John Wiley & Sons Inc, New York London Sydney Toronto, pp 381–409

    Google Scholar 

  35. Mirsky I, Pfeffer JM, Pfeffer MA, Braunwald E (1983) The contractile state as the major determinant in the evolution of left ventricular dysfunction in the spontaneously hypertensive rat. Circ Res 53: 767–778

    Article  PubMed  CAS  Google Scholar 

  36. Pfeffer JM, Pfeffer MA, Braundwald E (1983) Development of left ventricular dysfunction in the female spontaneously hypertensive rat. In: Alpert NR (ed), Myocardial hypertrophy and failure. Raven Press, New York, pp 73–84

    Google Scholar 

  37. Pfeffer JM, Pfeffer MA, Fletcher P, Braunwald E (1981) Impaired cardiac performance in rats with long-term spontaneous hypertension. In: Strauer BE (ed), The Heart in Hypertension. Springer-Verlag, Berlin Heidelberg New York, pp 389–399

    Chapter  Google Scholar 

  38. Poche W (1982) Strukturelle Veränderungen des druck-und volumenüberbelasteten Herzens. In: Roskamm H, Rendell H (eds), Herzkrankheiten. Pathophysiologie, Diagnostik, Therapie. Springer-Verlag Berlin Heidelberg New York, pp 487–494

    Chapter  Google Scholar 

  39. Riecker G (1975) Klinische Kardiologie. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  40. Rupp H (1981) The adaptive changes in the isoenzyme pattern of myosin from hypertrophied rat myocardium as a result of pressure overload and physical training. Basic Res Cardiol 76: 79–88

    Article  PubMed  CAS  Google Scholar 

  41. Rupp H, Kissling G, Jacob R (1983) The hormonal and hemodynamic determinants of polymorphic myosin. In: Alpert NR (ed), Myocardial Hypertrophy and Failure, Vol 7. Raven Press, New York, pp 373–383

    Google Scholar 

  42. Rutishauser W, Krayenbühl HP (1983) Herz. In: Siegenthaler W (ed), Klinische Pathophysiologie. Thieme, Stuttgart, pp 606–677

    Google Scholar 

  43. Sandritter W, Beneke G (1974) Allgemeine Pathologie. Schattauer, Stuttgart New York

    Google Scholar 

  44. Schaper J (1983) Morphometry of cardiac muscle. The relationship between structure and function in human hypertrophied hearts. An ultrastructural morphometric study. In: Alpert NR (ed), Myocardial hypertrophy and failure, Vol 7. Raven Press, New York, pp 177–196

    Google Scholar 

  45. Schölmerich P (1972) Anpassungserscheinungen des Herzens, Herzinsuffizienz. In: Bock HE (ed), Pathophysiologie. Bd II. Thieme, Stuttgart, pp 96–104

    Google Scholar 

  46. Schwartz K, Lecarpentier Y, Martin JL, Lompré AM, MercadierJJ, Swynghedauw B (1981) Myosin isoenzyme distribution correlated with speed of myocardial contraction. J Mol Cell Cardiol 13: 1071–1075

    Article  CAS  Google Scholar 

  47. Sodeman WA, Sodeman TM (1979) Pathologic Physiology. Mechanisms of Disease. WB Saunders Comp, Philadelphia London Toronto

    Google Scholar 

  48. Strauer BE (1980) Hypertensive Heart Disease. Springer-Verlag Berlin Heidelberg New York

    Google Scholar 

  49. Suko J, Ito Y, Chidsey A (1973) Intracellular metabolism of calcium in the hypertrophied and failing heart. In: Roskamm H, Reindell H (eds), Das chronisch kranke Herz. Schattauer Verlag, Stuttgart New York, pp 183–189

    Google Scholar 

  50. Thiedemann KU, Holubarsch Ch, Medugorac I, Jacob R (1983) Connective tissue content and myocardial stiffness in pressure induced cardiac hypertrophy. Basic Res Cardiol 78: 140–155

    Article  PubMed  CAS  Google Scholar 

  51. Vogt M, Jacob R (1985) Myocardial elasticity and left ventricular distensibility as related to oxygen deficiency and right ventricular filling. Analysis in a rat heart model. Basic Res Cardiol 80: 537–547

    Article  PubMed  CAS  Google Scholar 

  52. Wendt-Gallitelli MF, Ebrecht G, Jacob R (1979) Morphological alterations and their functional interpretation in the hypertrophied myocardium of Goldblatt hypertensive rats. J Mol Cell Cardiol 11: 275–287

    Article  PubMed  CAS  Google Scholar 

  53. Wikman-Coffelt J, Parmley WW, Mason DT (1979) The cardiac hypertrophy process: Analyses of factors determining pathological vs physiological development. Circ Res 45: 679–707

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. Jacob

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jacob, R., Vogt, M., Rupp, H. (1986). Pathophysiological mechanisms in cardiac insufficiency induced by chronic pressure overload — an attempt to analyze specific factors in animal experiment. In: Jacob, R. (eds) Controversial issues in cardiac pathophysiology. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-11374-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11374-5_20

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-11376-9

  • Online ISBN: 978-3-662-11374-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics