Skip to main content

Cardiac energetics and the Fenn effect

  • Conference paper
Cardiac Energetics

Summary

The energy output of a cardiac contraction can be divided into several phenomenologically measured components, although it must be emphasized that such subdivisions are often thermodynamically misleading. There is an activation term that relates to Ca + + release and retrieval, a work term and a stress or load-dependent heat term. The work and load-dependent energy terms presumably have their origin in the actin-activated myosin ATPase. It can be shown that the enthalpy: load relationship has a similar format across both mammalian and amphibian hearts: the scaling of both the energy and load axes is however altered by changes in contractility. The fact that enthalpy production is so clearly load-dependent indicates that there is a Fenn effect in cardiac muscle, although the discovery that energy output is greatest in an isometric contraction clearly contradicts one of the two central findings of Fenn’s skeletal muscle investigations. Cardiac oxygen consumption per beat can be linearly correlated with ventricular systolic pressure — volume area (PVA) which is defined in terms of stroke work and potential energy components. If the basal and activition components are subtracted out cardiac muscle can be shown to operate at a constant PVA efficiency. The existing myothermic and polarographic data can be reconciled with the PVA concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen DG, Kentish JC (1985) The cellular basis of the length-tension relations in cardiac muscle. J Mol Cell Cardiol 17: 821–840

    Article  PubMed  CAS  Google Scholar 

  2. Alpert NR, Mulieri LA (1982) Increased myothermal economy of isometric force generation in compensated cardiac hypertrophy induced by pulmonary artery constriction in rabbit. A characterization of heat liberation in normal and hypertrophied right ventricular papillary muscles. Circ Res 50: 491–500

    Google Scholar 

  3. Brandt PW, Orentlicher M (1972) Muscle energetics and the Fenn effect. Biophys J 12: 512527

    Google Scholar 

  4. Chapman JB (1982) Heat production. In: Drake-Holland AJ, Noble MM (eds) Cardiac metabolism. Wiley, Chichester, pp 239–256

    Google Scholar 

  5. Chapman JB, Gibbs CL (1974) The effect of metabolic substrate on mechanical activity and heat production in rabbit papillary muscle. Cardiovasc Res 8: 656–667

    Article  PubMed  CAS  Google Scholar 

  6. Coleman HN, Sonnenblick EH, Braunwald E (1969) Myocardial oxygen consumption associated with external work: the Fenn effect. Am J Physiol 217: 291–296

    PubMed  CAS  Google Scholar 

  7. Crow MT, Kushmerick MJ (1982) Chemical energetics of slow-and fast-twitch muscles of the mouse. J Gen Physiol 79: 147–166

    Article  PubMed  CAS  Google Scholar 

  8. Fenn WO (1923) A quantitative comparison between the energy liberated and the work performed by the isolated sartorius of the frog. J Physiol (Lond) 58: 175–203

    CAS  Google Scholar 

  9. Ford LE (1980) Effect of afterload reduction on myocardial energetics. Circ Res 46: 161–166

    Article  PubMed  CAS  Google Scholar 

  10. Gibbs CL (1978) Cardiac energetics. Physiol Rev 58: 174–254

    PubMed  CAS  Google Scholar 

  11. Gibbs CL (1982) Modification of the physiological determinants of cardiac energy expernditure by pharmacological agents. Pharmacol Ther 18: 133–152

    Article  PubMed  CAS  Google Scholar 

  12. Gibbs CL (1985) Physiological factors determining cardiac energy expenditure. In: Sideman S, Beyer R (eds) Simulation and imaging of the cardiac system. Karger, pp 358–377

    Google Scholar 

  13. Gibbs CL, Chapman JB (1974) The effect of stimulus conditions and temperature upon the energy output of frog and toad sartorii. Am J Physiol 227: 964–971

    PubMed  CAS  Google Scholar 

  14. Gibbs CL, Chapman JB (1979) Cardiac energetics. Handbook of Physiology, Cardiovascular System. Bethesda MD: Am Physiol Soc, vol 2, chap. 22, pp 775–804

    Google Scholar 

  15. Gibbs CL, Chapman JB (1985) Cardiac mechanics and energetics: chemomechanical transduction in cardiac muscle. Am J Physiol 249: H199 - H206

    PubMed  CAS  Google Scholar 

  16. Gibbs CL, Gibson WR (1970) Energy production in cardiac isotonic contractions. J Gen Physiol 56: 732–750

    Article  PubMed  CAS  Google Scholar 

  17. Gibbs CL, Mommants WFHM, Ricchivti NV (1967) Energetics of cardiac contractions. J Physiol (Lond) 191: 25–46

    CAS  Google Scholar 

  18. Gibbs CL, Vaughan P (1968) The effect of calcium depletion upon the tension-independent component of cardiac heat production. J Gen Physiol 52: 533–549

    Article  Google Scholar 

  19. Hill AV (1964) The effect of load on the heat of shortening of muscle. Proc R Soc (Lond) Ser B 159: 297–318

    Article  CAS  Google Scholar 

  20. Hill AV (1964) The effect of tension in prolonging the active state in a twitch. Proc R Soc (Lond) Ser B 159: 589–595

    Article  CAS  Google Scholar 

  21. Hill AV (1964) The variation of total heat production in a twitch with velocity of shortening. Proc R Soc (Lond) Ser B 159: 596–605

    Article  CAS  Google Scholar 

  22. Jewell BR (1977) A re-examination of the influence of muscle length on myocardial performance Circulation 40: 221–230

    CAS  Google Scholar 

  23. Loiselle DS, Gibbs CL (1979) Species differences in cardiac energetics. Am J Physiol 237: H90 - H98

    PubMed  CAS  Google Scholar 

  24. Oplatka A (1972) On the mechanochemistry of muscular contraction. J Theor Biol 34: 379–403

    Article  PubMed  CAS  Google Scholar 

  25. Pool PE, Chandler BM, Seagren SC, Sonnenblick EH (1968) Mechanochemistry of cardiac muscle II. The isotonic contraction. Circ Res 22: 465–472

    Google Scholar 

  26. Rall JA (1982) Sense and nonsence about the Fenn effect. Am J Physiol 242: H1 - H6

    PubMed  CAS  Google Scholar 

  27. Sagawa K (1978) The ventricular pressure-volume diagram revisited. Circ Res 43: 667–687

    Article  Google Scholar 

  28. Suga H, Hayashi T, Shirahata M (1981) Ventricular systolic pressure-volume area as predictor of cardiac oxygen consumption. Am J Physiol 240: H39 - H44

    PubMed  CAS  Google Scholar 

  29. Suga H, Hisano R, Goto Y, Yamada O, Igashari Y (1983) Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure-volume area in canine left ventricle. Circ Res 53: 306–318

    Article  PubMed  CAS  Google Scholar 

  30. Wendt IR, Gibbs CL (1976) Recovery heat production of mammalian fast-and slow-twitch muscles. Am J Physiol 230: 1637–1643

    Google Scholar 

  31. Woledge RC (1968) The energetics of tortoise muscle. J Physiol (Lond) 197: 685–707

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. Jacob Hj. Just Ch. Holubarsch

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gibbs, C.L. (1987). Cardiac energetics and the Fenn effect. In: Jacob, R., Just, H., Holubarsch, C. (eds) Cardiac Energetics. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-11289-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11289-2_6

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-11291-5

  • Online ISBN: 978-3-662-11289-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics