Skip to main content

Cardiac basal and activation metabolism

  • Conference paper

Summary

Cardiac basal metabolism is the rate of energy expenditure of the quiescent myocardium. It is species dependent and increases with pre-load. It has small contributions from membrane-bound cation pumps. The contribution of protein metabolism remains open to question. Calculations show that mitochondrial proton pumping may account for a large fraction of the cardiac basal metabolism. Nevertheless this component remains essentially ill-understood. Cardiac activation metabolism is the supra-basal rate of energy expenditure associated with those processes that activate contraction. In isolated muscle preparations it is typically measured as the rate of heat production or oxygen consumption of a muscle, pre-shortened to a length where active force production is negligible, although it is also estimated by pharmacological intervention. In whole-heart studies it is indexed by the supra-basal rate of oxygen consumption of the empty, beating but non-working heart. Activation metabolism underwrites electrical excitation (the ECG) and excitation-contraction coupling (the cycling of calcium ions). It is increased by agents that increase contractility; it probably increases with pre-load, via the phenomenon of length-dependent activation. The basal and activation components each account for one-quarter to one-third of the total energy expenditure of the heart under normal conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpert NR, Mulieri LA (1982) Heat, mechanics and myosin ATPase in normal and hypertrophied heart muscle. Fed Proc 41: 192–198

    PubMed  CAS  Google Scholar 

  2. Barclay JK, Gibbs CL, Loiselle DS (1979) Stress as an index of metabolic cost in papillary muscle of the cat. Basic Res Cardiol 74: 594–603

    Article  PubMed  CAS  Google Scholar 

  3. Bretschneider HJ, Hubner G, Knoll D, Lohr B, Nordbeck H, Spieckermann PG (1975) Myocardial resistance and tolerance to ischemia: physiological and biochemical basis. J Cardiovasc Surg 16: 241–260

    CAS  Google Scholar 

  4. Burns AH, Reddy WJ (1978) Amino acid stimulation of oxygen and substrate utilization by cardiac myocytes. Am J Physiol 235: E461 — E466

    PubMed  CAS  Google Scholar 

  5. Chapman JB, Gibbs CL (1972) An energetic model of muscle contraction. Biophys J 12: 227236

    Google Scholar 

  6. Chapman JB, Gibbs CL (1974) The effect of metabolic substrate on mechanical activity and heat production in papillary muscle. Cardiovasc Res 8: 656–667

    Article  PubMed  CAS  Google Scholar 

  7. Chapman JB, Gibbs CL, Gibson WR (1970) Effects of calcium and sodium on cardiac contractility and heat production in rabbit papillary muscle. Circ Res 27: 601–610

    Article  PubMed  CAS  Google Scholar 

  8. Chapman JB, Gibbs CL, Loiselle DS (1977) Simultaneous heat and fluorescence at high rates of energy expenditure: effects of caffeine and isoprenaline. J Mol Cell Cardiol 9: 715–732

    Article  PubMed  Google Scholar 

  9. Coleman HN (1967) Role of acetylstrophanthidin in augmenting myocardial oxygen consumption. Circ Res 21: 487–495

    Article  PubMed  CAS  Google Scholar 

  10. Coulson RL (1976) Energetics of isovolumic contractions of the isolated heart. J Physiol 260: 4553

    Google Scholar 

  11. Coulson RL (1982) Isolated whole heart calorimetry: energetics of length-dependent activation. Fed Proc 41: 199–203

    PubMed  CAS  Google Scholar 

  12. Earl CA, Laurent GJ, Bonnin CM, Sparrow MP (1978) Turnover rates of muscle protein in cardiac and skeletal muscles of dog, fowl, rat and mouse: turnover rate related to muscle function. Aust J Exp Biol Med 56: 265–277

    Article  CAS  Google Scholar 

  13. Feng TP (1932) The effect of length on the resting metabolism of muscle. J Physiol 74: 441–454

    PubMed  CAS  Google Scholar 

  14. Gibbs CL (1978) Cardiac energetics. Physiol Rev 58: 174–254

    PubMed  CAS  Google Scholar 

  15. Gibbs CL (1983) Thermodynamics and cardiac energetics. In: Dintenfass L, Julian DG, Seaman GVF (eds) Heart perfusion, energetics and ischemia. NATO ASI Series: Life Sciences, vol 62. Plenum Press, New York, pp 549–576

    Chapter  Google Scholar 

  16. Gibbs CL (1986 a) The dependence of activation heat on extracellular calcium. J Mol Cell Cardiol 18 [Suppl 1]:298P

    Google Scholar 

  17. Gibbs CL (1986 b) Cardiac energetics and the Fenn effect. Basic Res Cardiol (this supplement)

    Google Scholar 

  18. Gibbs CL, Chapman JB (1979 a) Cardiac heat production. Ann Rev Physiol 41: 507–519

    Google Scholar 

  19. Gibbs CL, Chapman JB (1979 b) Cardiac energetics. In: Berne RM, Sperelakis N (eds) The cardiovascular system. Handbook of Physiology, Ch 22, Am Physiol Soc, Bethesda, MD, pp 775804

    Google Scholar 

  20. Gibbs CL, Gibson WR (1969) Effect of ouabain on the energy output of rabbit cardiac muscle. Circ Res 24: 951–967

    Article  PubMed  CAS  Google Scholar 

  21. Gibbs CL, Gibson WR (1970) Effect of alterations in the stimulus rate upon energy output, tension development and tension-time integral of cardiac muscle in rabbits. Circ Res 27: 611–618

    Article  PubMed  CAS  Google Scholar 

  22. Gibbs CL, Gibson WR (1972) Isoprenaline, propranolol, and the energy output of rabbit cardiac muscle. Cardiovasc Res 6: 508–515

    Article  PubMed  CAS  Google Scholar 

  23. Gibbs CL, Kotsanas G (1986) Factors regulating basal metabolism of the isolated perfused rabbit heart. Am J Physiol (in press)

    Google Scholar 

  24. Gibbs CL, Loiselle DS (1978) The energy output of tetanized cardiac muscle: species differences. Pflug Arch 373: 31–38

    Article  CAS  Google Scholar 

  25. Gibbs CL, Vaughan P (1968) The effects of calcium depletion upon the tension-independent component of cardiac heart production. J Gen Physiol 52: 532–549

    Article  PubMed  CAS  Google Scholar 

  26. Gibbs CL, Mommaerts WFMH, Ricchiuti NV (1967) Energetics of cardiac contractions. J Physiol 191: 25–46

    PubMed  CAS  Google Scholar 

  27. Gibbs CL, Woolley G, Kotsanas G, Gibson WR (1984) Cardiac energetics in daunorubicin-induced cardiomyopathy. J Mol Cell Cardiol 16: 953–962

    Article  PubMed  CAS  Google Scholar 

  28. Hoppeler H, Linstedt SL, Claassen H, Taylor CR, Mathieu O, Wiebel ER (1984) Scaling mitochondrial volume in heart to body mass. Resp Physiol 55: 131–137

    Article  CAS  Google Scholar 

  29. Kira Y, Kochel PJ, Gordon EE, Morgan HE (1984) Aortic perfusion pressure as a determinant of cardiac protein synthesis. Am J Physiol 246: C247 — C258

    PubMed  CAS  Google Scholar 

  30. Klocke FJ, Kaiser GA, Ross J Jr, Braunwald E (1965) Mechanism of increase of myocardial oxygen uptake produced by catecholamines. Am J Physiol 209: 913–918

    PubMed  CAS  Google Scholar 

  31. Lehninger AL (1979) Biochemistry ( 2nd edn ). Worth Publishers Inc, NY

    Google Scholar 

  32. Lochner W, Arnold G, Muller-Ruchholtz ER (1968) Metabolism of the artificially arrested heart and of the gas-perfused heart. Am J Cardiol 22: 299–311

    Article  PubMed  CAS  Google Scholar 

  33. Lochner W, Dudziak R (1965) Stillstandumsatz and Ruheumsatz des Herzens. Pflug Arch 285: 169–177

    Article  CAS  Google Scholar 

  34. Loiselle DS (1979) The effects of temperature on the energetics of rat papillary muscle. Pflug Arch 379: 173–180

    Article  CAS  Google Scholar 

  35. Loiselle DS (1983) Some factors modifying the metabolism of the K + -arrested guinea-pig heart. J Mol Cell Cardiol 15 [Suppl 1]: 286 P

    Google Scholar 

  36. Loiselle DS (1985 a) The rate of resting heat production of rat papillary muscle. Pflug Arch 405:155–162

    Google Scholar 

  37. Loiselle DS (1985 b) The effect of temperature on the basal metabolism of cardiac muscle. Pflug Arch 405:163–169

    Google Scholar 

  38. Loiselle DS (1985 c) Simulation of simple and myoglobin-facilitated oxygen diffusion in resting papillary muscle. J Mol Cell Cardiol 17(5):24P

    Google Scholar 

  39. Loiselle DS, Gibbs CL (1979) Species differences in cardiac energetics. Am J Physiol 237: H90 — H98

    PubMed  CAS  Google Scholar 

  40. Loiselle DS, Gibbs CL (1983) Factors affecting the metabolism of resting rabbit papillary muscle. Pflug Arch 396: 285–291

    Article  CAS  Google Scholar 

  41. Loiselle DS, Wendt IR, Hoh JFY (1982) Energetic consequences of thyroid-modulated shifts in ventricular isomyosin distribution in the rat. J Mus Res Cell Motil 3: 5–23

    Article  CAS  Google Scholar 

  42. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191: 144–148

    Article  PubMed  CAS  Google Scholar 

  43. Rall JA (1982) Energetics of Ca’ cycling during skeletal muscle contraction. Fed Proc 41: 155160

    Google Scholar 

  44. Schreiber SS, Evans C, Oratz M, Rothchild M (1986) The basal level of cardiac protein synthesis. J Mol Cell Cardiol 18 [Suppl 1]: 26 P

    Google Scholar 

  45. Smith HE, Page E (1976) Morphometry of rat heart mitochondrial subcompartments and membranes: application to myocardial cell atrophy after hypophysectomy. J Ultrastruct Res 56: 3141

    Google Scholar 

  46. Suga H, Hayashi T, Shirahata M (1981) Ventricular systolic pressure-volume area as a predictor of cardiac oxygen consumption. Am J Physiol 240: H39 — H44

    PubMed  CAS  Google Scholar 

  47. Suga H, Hisano R, Goto Y, Yamada O, Igarashi Y (1983 a) Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure volume area in canine left ventricle. Circ Res 53: 306–318

    Google Scholar 

  48. Suga H, Hisano R, Hirata S, Hayashi T, Yamada O, Ninomiya I (1983 b) Heart-rate independent energetics and systolic pressure-volume area in dog heart. Am J Physiol 244: H206 — H214

    Google Scholar 

  49. Suga H, Yamada O, Goto Y (1984) Energetics of ventricular contraction as traced in the pressure-volume diagram. Fed Proc 43: 61–63

    Google Scholar 

  50. Weber KT, Janicki JS (1977) Myocardial oxygen consumption: the role of wall force and shortening. Am J Physiol 233: H421 — H430

    PubMed  CAS  Google Scholar 

  51. Wendt IR, Loiselle DS (1981) The effect of external calcium concentration on activation heat in cardiac muscle. J Mol Cell Cardiol [Suppl 3 ) 13: 8 P

    Article  Google Scholar 

  52. Wilkman-Coffelt J, Sievers R, Coffelt RJ, Parmley WW (1983) The cardiac cycle: regulation and energy oscillations. Am J Physiol H354 — H362

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. Jacob Hj. Just Ch. Holubarsch

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Loiselle, D.S. (1987). Cardiac basal and activation metabolism. In: Jacob, R., Just, H., Holubarsch, C. (eds) Cardiac Energetics. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-11289-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11289-2_4

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-11291-5

  • Online ISBN: 978-3-662-11289-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics