Advertisement

The effect of water supply and humidity on growth and development

Chapter
Part of the Encyclopedia of Plant Physiology / Handbuch der Pflanzenphysiologie book series (532, volume 16)

Abstract

Soil water supply and atmospheric humidity have a profound influence on every aspect of the development of plants. The great practical importance of this has stimulated a great deal of research, especially in countries where shortage of water is a recurrent agricultural problem. Consequently we have a good deal of empirical knowledge concerning the effects of various water regimes on the growth, structure and composition of various plants, mainly crop plants. Much of this has been discussed in Maximov’s excellent monograph (Maximov 1929). Some new data have been added since which tend to confirm the older ones, but little progress has been made in tracing the chain of causes and effects which links the water regime to which the plant is subjected with its visible results in terms of cell number, size and differentiation.

Keywords

Soil Moisture Water Supply Osmotic Pressure High Light Intensity Leaf Anatomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Alexandbov, W., O. Alexandrov u. A. Timofeev: Die Wasserversorgung der Blätter und ihre Struktur. Scientific papers of the applied section of the Tiflis Bot. Gard. 2, 85–106 (1921) [Russian]. Quoted by Walter 1926.Google Scholar
  2. Arber, A.: Water Plants. Cambridge 1920.Google Scholar
  3. Ashby, E.: Studies in the morphogenesis of leaves. II. The area, cell size and cell number of leaves of Ipomoea in relation to their position on the shoot. New Phytologist 47, 177–195 (1948).CrossRefGoogle Scholar
  4. Ashby, E., and E. Wangermann: Studies in the morphogenesis of leaves. IV. Further observations on area, cell size and cell number of leaves of Ipomoea in relation to their position on the shoot. New Phytologist 49, 23–35 (1950 a).CrossRefGoogle Scholar
  5. Ashby, E., and E. Wangermann V. A note on the origin of differences in cell size among leaves at different levels of insertion on the stem. New Phytologist 49, 189–192 (1950b).CrossRefGoogle Scholar
  6. Balls, W. L.: The cotton plant in Egypt. London 1912.CrossRefGoogle Scholar
  7. Bell, P. R.: Investigations of the Pteridophyte life cycle. J. Linn. Soc. 56, 188–203 (1959).CrossRefGoogle Scholar
  8. Boodle, L. A.: On the trifoliolate and other leaves of the gorse (Ulex europaeus L.). Ann. Bot. (Lond.) 28, 527–530 (1914).Google Scholar
  9. Briggs, L. J., and H. L. Shantz: The wilting coefficient for different plants and its indirect determination. U. S. Dept. Agr. Bull. Bur. Ind. Bull. 230, 5–83 (1912).Google Scholar
  10. Brown, W. V.: The relation of soil moisture to cleistogamy in Stipa leucotricha. Bot. Gaz. 113, 438–444 (1952).CrossRefGoogle Scholar
  11. Brunner, W.: Untersuchungen an einigen Fettpflanzen. Flora (Jena) 87, 387 (1900).Google Scholar
  12. Burns, G. P.: Heterophylly in Proserpinaca palustris. Ann. Bot. (Lond.) 18, 579–587 (1904).Google Scholar
  13. Cain, S. A., and J. E. Potzger: A comparison of leaf tissues of Gaylussacia boccata grown under different conditions. Amer. Midl. Nat. 24, 444 (1940).CrossRefGoogle Scholar
  14. Cockayne, L.: On the significance of spines in Discaria Toumatou. New Phytologist 4, 79–85 (1905).CrossRefGoogle Scholar
  15. Crowther, F.: Studies in the growth analysis of the cotton plant under irrigation in the Sudan. Ann. Bot. (Lond.) 48, 877–913 (1934).Google Scholar
  16. Dastur, R. H.: Water content, a factor in photosynthesis. Ann. Bot. (Lond.) 38, 779–788 (1924).Google Scholar
  17. Ashby, E., and E. Wangermann The relation between water content and photosynthesis. Ann. Bot. (Lond.) 39, 769–786 (1925).Google Scholar
  18. Dastur, R. H,, and B. L. Desai: The relation between water content, chlorophyll content, and the rate of photosynthesis in some tropical plants at different temperatures. Ann. Bot. (Lond.) 47, 69–88 (1933).Google Scholar
  19. Eberhardt, P.: Influence de l’air sec et de l’air humide sur la forme et sur la structure des végétaux. Ann. Sci. nat. Bot., Sér. VIII 18, 60–152 (1903).Google Scholar
  20. Förster, K.: Die Wirkung äußerer Faktoren auf Entwicklung und Gestaltbildung bei Marchantia polymorpha. Planta (Berl.) 3, 325 (1927).CrossRefGoogle Scholar
  21. Gates, C. T.: The response of the young tomato plant to a brief period of water shortage. Aust. J. biol. Sci. 8, 196–214, 215–230 (1955).Google Scholar
  22. Gessner, F.: Beiträge zur Biologie amphibischer Pflanzen. Ber. dtsch. bot. Ges. 58, 2 (1940).Google Scholar
  23. Goebel, K.: Einleitung in die experimentelle Morphologie der Pflanzen. Leipzig 1908.Google Scholar
  24. Gordienko, M.: Über die Beziehungen zwischen Bodenbeschaffenheit und Wurzelgestaltung bei jungen Pflanzen. Landw. Jb. 72, 125–139 (1930).Google Scholar
  25. Gordienko, M. Biol. Abstr. 6, 2510 (1930).Google Scholar
  26. Harris, F. S.: The effect of soil moisture, plant food and age on the ratio of tops to roots in plants. J. Amer. Soc. Agron. 6, 65–75 (1914).CrossRefGoogle Scholar
  27. Hawker, L.: The physiology of fungi. London 1950.Google Scholar
  28. Heuser, W.: Untersuchungen über den anatomischen Bau des Weizenblattes je nach der Höhe seines Standortes am Halme und unter dem Einfluß äußerer Bedingungen. Kühn-Arch. 6, 391 (1915).Google Scholar
  29. Hooker, H. D.: Hydrotropism in roots of Lupinus albus. Ann. Bot. (Lond.) 29, 265–285 (1915).Google Scholar
  30. Hopp, H.: Sporophore formation by Fomes applanatus in culture. Phytopathology 28, 356–358 (1938).Google Scholar
  31. Hudson, J. P.: Plants and their water supplies. Endeavour 16, 84–89 (1957).Google Scholar
  32. Jones, H.: Heterophylly in some species of Callitriche, with special reference to Callitriche intermedia. Ann. Bot. (Lond.), N. S. 19, 225–245 (1955).Google Scholar
  33. Kokin, S.: Zur Frage über den Einfluß der Bodenfeuchtigkeit auf Pflanzen. Bull. Jard. Bot. Leningrad 26, 1–19 (1925) [Russian]. Quoted by Maxlmov 1929.Google Scholar
  34. Lebedintsev, E.: Physiologische und anatomische Besonderheiten der in trockener und feuchter Luft gezogenen Pflanzen. Ber. dtsch. bot. Ges. 45, 83–96 (1927).Google Scholar
  35. Lothelier, M. A.: Rechèrches sur les plantes à piquants. 2me partie. Influence de l’état hygrométrique et de l’éclairement sur les tiges et les feuilles des plantes à piquants. Rev. de Bot. 5, 518 (1893).Google Scholar
  36. Maximov, N. A.: The plant in relation to water. London 1929.Google Scholar
  37. Gordienko, M. The physiological significance of the xeromorphic structure of plants. J. Ecology 19, 272–282 (1931).Google Scholar
  38. McCallum, W. B.: On the nature of the stimulus causing the change in form and structure in Proserpinaca palustris. Bot. Gaz. 34, 93–108 (1902).CrossRefGoogle Scholar
  39. Milthorpe, F. L.: Fibre development of flax in relation to water supply and light intensity. Ann. Bot. (Lond.) 9, 31–53 (1945).Google Scholar
  40. Mogk, W.: Untersuchungen über Korrelationen von Knospen und Sprossen. Arch. Entwickl.-Mech. Org. 38, 584–681 (1914).CrossRefGoogle Scholar
  41. Morton, A. G., and D.J. Watson: A physiological study of leaf growth. Ann. Bot. (Lond.), N. S. 12, 281–310 (1948).Google Scholar
  42. Njoku, E.: Studies in the morphogenesis of leaves. XI. The effect of light intensity on leaf shape in Ipomoea caerulea. New Phytologist 55, 91–110 (1956).CrossRefGoogle Scholar
  43. Nordhausen, M.: Über Sonnen- und Schattenblätter. Ber. dtsch. bot. Ges. 30, 483 (1912).Google Scholar
  44. Penfound, W. T.: Plant anatomy as conditioned by light intensity and soil moisture. Amer. J. Bot. 18, 558–572 (1931).CrossRefGoogle Scholar
  45. Gordienko, M. The anatomy of the castor bean as conditioned by light intensity and soil moisture. Amer. J. Bot. 19, 538–546 (1931).Google Scholar
  46. Petrie, A. H. K., and J. T. Arthur: Physiological ontogeny of the tobacco plant. Effect of varying water supply on drifts in dry weight and leaf area and on various components of the leaves. Aust. J. exp. Biol. med. Sci. 21, 191 (1943).CrossRefGoogle Scholar
  47. Polle, R.: Über den Einfluß verschieden hohen Wassergehaltes, verschiedener Düngung und Festigkeit des Bodens auf die Wurzelentwicklung des Weizens und der Gerste im ersten Vegetationsstadium. J. Landw. 58, 297–345 (1910).Google Scholar
  48. Rettig, H.: Über den Einfluß der Luftfeuchtigkeit auf die Entwicklung und die Gewebedifferenzierung der Pflanzen. Bot. Archiv 25, 128 (1929).Google Scholar
  49. Rippel, A.: Der Einfluß der Bodentrockenheit auf den anatomischen Bau der Pflanzen. Beih. bot. Zbl. 36, 187–260 (1919).Google Scholar
  50. Runyon, E. H.: Ratio of water content to dry weight in leaves of the creosote bush. Bot. Gaz. 97, 518–553 (1936).CrossRefGoogle Scholar
  51. Russell, E. J.: Soil conditions and plant growth. London 1932.Google Scholar
  52. Salisbury, E. J.: On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Phil. Trans. B 216, 1–65 (1928).CrossRefGoogle Scholar
  53. Schenck, H.: Über Strukturveränderungen submers vegetierender Landpflanzen. Ber. dtsch. bot. Ges. 2, 481 (1884).Google Scholar
  54. Schimper, A. F.: Pflanzengeographie auf physiologischer Grundlage. Jena 1898.Google Scholar
  55. Seelhorst, C.V., U. Krzymowski: Das Reifen verschiedener Sommerweizen-Varietäten bei verschiedener Bodenfeuchtigkeit. J. Landw. 57, 113–114 (1909).Google Scholar
  56. Skipper, E.: The ecology of the gorse (Ulex) with special reference to the growth forms on Hindhead Common. J. Ecology 10, 24–52 (1922).CrossRefGoogle Scholar
  57. Smith, T. J.: Response of biennial sweet clover to moisture, temperature and length of day. J. Amer. Soc. Agron. 34, 865–876 (1942).CrossRefGoogle Scholar
  58. Sweet, H. R.: Studies on the biology of two species of Magnusia. II. Effect of humidity on conidial germination, growth and reproduction. Amer. J. Bot. 29, 436–441 (1942).CrossRefGoogle Scholar
  59. Tumanov, J. J.: Ungenügende Wasserversorgung und das Welken der Pflanzen als Mittel zur Erhöhung ihrer Dürreresistenz. Planta (Berl.) 3, 391 (1927).CrossRefGoogle Scholar
  60. Vischer, W.: Experimentelle Beiträge zur Kenntnis der Jugend- und Folgeformen xerophiler Pflanzen. Flora (Jena), N. F. 8, 1 (1915).Google Scholar
  61. Walter, H.: Die Anpassungen der Pflanzen an Wassermangel. Freising u. München 1926.Google Scholar
  62. Gordienko, M. Die Hydratur der Pflanze. Jena 1931.Google Scholar
  63. Watson, R. W.: The mechanism of elongation in palisade cells. New Phytologist 41, 206–221 (1942).CrossRefGoogle Scholar
  64. Weaver, J. E.: Investigations on the root habits of plants. Amer. J. Bot. 12, 502–509 (1925).CrossRefGoogle Scholar
  65. Wiesner, J.: Formänderungen von Pflanzen bei Kultur im absolut feuchten Raume und im Dunkeln. Ber. dtsch. bot. Ges. M9, 46 (1891).Google Scholar
  66. Woltereck, I.: Experimentelle Untersuchungen über die Blattbildung amphibischer Pflanzen. Flora (Jena) 123, 30 (1928).Google Scholar
  67. Yapp, R. H.: Spiraea ulmaria L. and its bearing on the problem of xeromorphy in marsh plants. Ann. Bot. (Lond.) 26, 815–870 (1912).Google Scholar
  68. Yapp, R. H., and U.C. Mason: The distribution of water in the shoots of certain herbaceous plants. Ann. Bot. (Lond.) 46, 159–181 (1932).Google Scholar
  69. Zalensky, V.: Materials for the study of the quantitative anatomy of different leaves on the same plant. Mem. Polytech. Inst. Kiev 4, 1–203 (1904) [Russian]. Quoted by Maximov 1929.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1961

Authors and Affiliations

There are no affiliations available

Personalised recommendations