Advertisement

Effects of radiation on growth and development

Chapter
Part of the Encyclopedia of Plant Physiology / Handbuch der Pflanzenphysiologie book series (532, volume 16)

Literature.

  1. Aberg, B.: Physiologische und ökologische Studien über die pflanzliche Photomorphose. Symbol. bot. Upsal. 8, 5–189 (1943).Google Scholar
  2. Arthur, J. M.: Radiation and anthocyanin pigments. In: Biological effects of radiation. Edit. by B. M. Duggar. Vol. II, pp. 1109–1118. New York: McGraw Hill Book Company 1936.Google Scholar
  3. Atkins, G. A.: The effect of pigment on photo-tropic response: A comparative study of reactions to monochromatic light. Ann. Bot. 50, 197–218 (1936).Google Scholar
  4. Bachmann, F., u. F. Bergann: Über die Wertigkeit von Strahlen verschiedener Wellenlänge für die phototropische Heizung von Avena sativa. Planta (Berl.) 10, 744–755 (1930).CrossRefGoogle Scholar
  5. Batalin, A.: Über die Wirkung des Lichtes auf die Entwicklung der Blätter. Bot. Z. 29, 669 bis 686 (1871).Google Scholar
  6. Borodin, J.: Über die Wirkung des Lichtes auf einige höhere Krypto-gamen. [1867] Bull. Acad. St. Petersb. 12, 432–447 (1868).Google Scholar
  7. Borthwick, H.A., S. B. Hendricks and M.W. Parker: The reaction controlling floral initiation. Proc. nat. Acad. Sci. (Wash.) 38, 929–934 (1952).CrossRefGoogle Scholar
  8. Borthwick, H. A., S. B. Hendricks, M. W. Parker, E. H. Toole and V. K. Toole: A reversible photoreaction controlling seed germination. Proc. nat. Acad. Sci. (Wash.) 38, 662–666 (1952).CrossRefGoogle Scholar
  9. Borthwick, H. A., S. B. Hendricks, E. H. Toole and V. K. Toole: Action of light on lettuce-seed germination. Bot. Gaz. 115, 205–225 (1954).CrossRefGoogle Scholar
  10. Bünning, E.: Phototropismus und Karotinoide. III. Weitere Untersuchungen an Pilzen und höheren Pflanzen. Planta (Berl.) 27, 583–610 (1937).CrossRefGoogle Scholar
  11. Burkholder, P. R.: The role of light in the life of plants. I. Light and physiological processes. II. The influence of light upon growth and differentiation. Bot. Review 2, 1–52, 97–172 (1936).CrossRefGoogle Scholar
  12. Butler, W. L., K. H. Norris, H. W. Siegelman and S. B. Hendricks: Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants. Proc. nat. Acad. Sci. (Wash.) 45, 1703–1708 (1959).CrossRefGoogle Scholar
  13. Caspary, R.: Bulliarda aquatica D. C. Schr. kgl. physik.-Ökonom. Ges. Königsberg 1 (1860) 66–91 (1861).Google Scholar
  14. Crocker, W.: Growth of plants. New York: Reinhold Publishing Corp. 1948.Google Scholar
  15. Darwin, F.: Etiolation as a phenomenon of adaptation. J. roy. hort. Soc. 19, 345–353 (1896).Google Scholar
  16. DeCandolle, A. P.: DeCandolle nahm irrig an, daß nur grüne Pflanzenteile etiolieren. Physiol. végét. 3, 1078 (1832).Google Scholar
  17. Downs, R. J.: Photoreversibility of leaf and hypocotyl elongation of dark-grown Red Kidney bean seedlings. Plant Physiol. 30, 468–473 (1955).CrossRefPubMedGoogle Scholar
  18. Du Buy, H.G., u. E. L. Nuernbergk: Phototropismus und Wachstum der Pflanzen. Ergebn. Biol. 12, 325–543 (1935).CrossRefGoogle Scholar
  19. Evenari, M.: Seed germination. In: Radiation biology. Edit. by A. Hollaender. Vol. III, pp. 519–549. New York: McGraw Hill Book Company 1956.Google Scholar
  20. Flint, L. H., and E. D. McAlister: Wave lengths of radiations in the visible spectrum inhibiting the germination of light sensitive lettuce seed. Smithson. Misc. Coll. 94, 1–11 (1935).Google Scholar
  21. Funke, G. L.: De formatieve invloed van hat licht op planten. 171 pp. Gorinchem, Netherl.: J. Noordiujn & Zn, N. V. 1944.Google Scholar
  22. Galston, A. W.: Phototropism. II. Bot. Review 16, 361–378 (1950).CrossRefGoogle Scholar
  23. Geissman, T. A., and E. Hinreiner: Theories of the biogenesis of flavonoid compounds. Bot. Review 18, 77–244 (1952).CrossRefGoogle Scholar
  24. Hendricks, S. B., and H. A. Borthwick: Photoresponsive growth. In: Aspects of synthesis and order in growth. Edit. by D. Rudnick. pp. 149–169. Princeton: Princeton University Press 1954.Google Scholar
  25. Kinzel, W.: Frost und Licht als beeinflussende Kräfte bei der Samenkeimung. Ludwigsburg: E. Ulmer 1913–1926.Google Scholar
  26. Klein, W. H., R. B. Withrow and V. B. Elstad: Response of the hypocotyl hook of bean seedlings to radiant energy and other factors. Plant Physiol. 31, 289–294 (1956).CrossRefPubMedGoogle Scholar
  27. Lange, S.: Über den Einfluß weißen und roten Lichtes auf die Entwicklung des Meso-kotyls bei Haferkeimlingen. Jb. wiss. Bot. 71, 1–25 (1929).Google Scholar
  28. Lehmann, E., u. F. Aichele: Keimungsphysiologie der Gräser. Stuttgart: Ferdinand Enke 1931.Google Scholar
  29. Liverman, J. L., N. P. Johnson and L. Starr: Reversible photoreaction controlling expansion of etiolated bean leaf disks. Science 121, 440–441 (1955).CrossRefPubMedGoogle Scholar
  30. MacDougal, D. T.: The influence of light and darkness upon growth and development. Mem. N. Y. Bot. Garden 2, 1–319 (1903).Google Scholar
  31. Mahler, H. R.: Studies on the fatty acid oxidizing system of animal tissues. IV. The prosthetic group of butyryl coenzyme A dehydrogenase. J. biol. Chem. 206, 13–26 (1954).PubMedGoogle Scholar
  32. Mohr, H.: Die Abhängigkeit des Protonemawachstums und der Protonemapolarität bei Farnen vom Licht. Planta (Berl.) 47, 127–158 (1956 a).CrossRefGoogle Scholar
  33. Mohr, H. Die Beeinflussung der Keimung von Farnsporen durch Licht und andere Faktoren. Planta (Berl.) 46, 534–551 (1956b).CrossRefGoogle Scholar
  34. Mohr, H. Der Einfluß monochromatischer Strahlung auf das Längenwachstum des Hypocotyls und auf die Anthocyanbildung bei Keimlingen von Sinapis alba L. (= Brassica alba Boiss.). Planta (Berl.) 49, 389–405 (1957).CrossRefGoogle Scholar
  35. Overbeek, J. van: Phototropism. Bot. Review 5, 655–681 (1939).CrossRefGoogle Scholar
  36. Parker, M. W., S. B. Hendricks, H. A. Borthwick and F. W. Went: Spectral sensitivities for leaf and stem growth of etiolated pea seedlings and their similarity to action spectra for photoperiodism. Amer. J. Bot. 36, 194–204 (1949).CrossRefGoogle Scholar
  37. Pfeffer, W.: Pflanzenphysiologie, 2. Aufl., Bd. II, S. 117. Leipzig: Wilhelm Engelmann 1904.Google Scholar
  38. Piringer, A. A., and P. H. Heinze: Effect of light on the formation of a pigment in the tomato fruit cuticle. Plant Physiol. 29, 467–472 (1954).CrossRefPubMedGoogle Scholar
  39. Popp, H. W., and F. Brown: Effects of different regions of the visible spectrum upon seed plants. In: Biological effects of radiation. Edit, by B.M.Duggar. Vol. II, pp. 763–790. New York: McGraw Hill Book Company 1936.Google Scholar
  40. Priestley, J. H.: On the anatomy of etiolated plants. New Phytologist 25, 145–170 (1926).CrossRefGoogle Scholar
  41. Priestley, J. H., and J. Ewing: Physiological studies on plant anatomy. VI. Etiolation. New Phytologist 22, 30–43 (1922).CrossRefGoogle Scholar
  42. Sachs, J., v.: Über den Einfluß der Lufttemperatur auf die stündlichen und täglichen Änderungen des Längenwachstums (Streckung) der Internodien. Arb. bot. Inst. Würzburg 1, 99–192 (1874).Google Scholar
  43. Sachs, J., v. Über den Einfluß des Tageslichtes auf Neubildung und Entfaltung verschiedener Pflanzenorgane. Beih. bot. Ztg (1863).Google Scholar
  44. Schönfeld, E.: Der Einfluß von Licht auf etiolierte Laubblätter. Beitr. Biol. Pflanzen 12, 351–412 (1914).Google Scholar
  45. Senebrier, J.: Physiologie Végétale. Geneva 1799.Google Scholar
  46. Siegelman, H. W., and S. B. Hendricks: Photo-control of anthocyanin formation in turnip and red cabbage seedlings. Plant Physiol. 32, 393–398 (1957).CrossRefPubMedGoogle Scholar
  47. Siegelman, H. W., and S. B. Hendricks: Photocontrol of anthocyanin synthesis in apple skin. Plant Physiol. 33, 185–190 (1958).CrossRefPubMedGoogle Scholar
  48. Spoehr, H. A.: The culture of albino maize. Plant Physiol. 17, 397–410 (1942).CrossRefPubMedGoogle Scholar
  49. Stolwijk, J. A. J.: Wavelength dependence of photomorphogenesis in plants. Meded. Landbouwhogesch., Wageningen 54, 181–244 (1954).Google Scholar
  50. Teodoresco, E. C.: Influence des diverses radiations luminenses sur la forme et la structure des plantes. Ann. des Sci. natur. Bot. 10, 141–262 (1899).Google Scholar
  51. Teodoresco, E. C.: Observations sur la Croissance des Plantes aux Luminares de Diverses Longueurs D’Onde. Ann. des Sci. natur. Bot. 11, 201–335 (1929).Google Scholar
  52. Toole, E. H., S. B. Hendricks, H. A. Borthwick and V. K. Toole: Physiology of seed germination. Ann. Rev. Plant Physiol. 7, 299–324 (1956).CrossRefGoogle Scholar
  53. Trumpf, C.: Über den Einfluß intermittierender Belichtung auf das Etiolement der Pflanzen. Bot. Archiv 5, 381–410 (1924).Google Scholar
  54. Vogt, E.: Über den Einfluß des Lichtes auf das Wachstum der Koleoptile von Avena sativa. Z. Bot. 7, 193–271 (1915).Google Scholar
  55. Wassink, E. C., and J. A. J. Stolwijk: Effects of light quality on plant growth. Ann. Rev. Plant Physiol. 7, 373–400 (1956).CrossRefGoogle Scholar
  56. Zalokar, M.: Biosynthesis of carotenoids in Neurospora. Action spectrum of photo-activation. Arch. Biochem. 56, 318–325 (1955).CrossRefPubMedGoogle Scholar
  57. Zollikofer, C.: Über die tropistische Wirkung von rotem Licht auf Dunkelpflanzen von Avena sativa. Versl. kon. Akad. Wet. Amsterd. 29, 551–558 (1920).Google Scholar
  58. “Germination” • “Mechanism of photomorphogenesis” • “Addendum”.Google Scholar
  59. Avery, G. S., P. R. Burkholder and H. B. Creighton: Polarized growth and cell studies in the first internode and coleoptile of Avena in relation to light and darkness. Bot. Gaz. 99, 125–143 (1937).CrossRefGoogle Scholar
  60. Avery, G. S., P. R. Burkholder and H. B. Creighton: Growth and structure in the first internode and coleoptile of Avena as affected by red, green, blue and violet radiation. Amer. J. Bot. 25, 10s (1938).Google Scholar
  61. Bailey, L. H.: Some preliminary studies of the influence of the electric arc light upon greenhouse plants. N. Y. Cornell Agr. Exp. Stat. BuU. 30, 83–122 (1891).Google Scholar
  62. Birch, A. J.: Biosynthetic relations of some natural phenolic and enolic compounds. Fortschr. Chem. organ. Naturstoffe 14, 186–216 (1957).Google Scholar
  63. Black, M., and P. F. Wareing: Photoperiodic control of germination in seed of birch (Betula pubescens, Ehrh.). Nature (Lond.) 174, 705 (1954).CrossRefGoogle Scholar
  64. Black, M., and P. F. WareingGrowth: studies in woody species. VII. Photoperiodic control of germination in Betula pubescens, Ehrh. Physiol. Plantaram (Cph.) 8, 300–316 (1955).CrossRefGoogle Scholar
  65. Bonner, J., and R. S. Bandurski: Studies on the physiology, pharmacology, and biochemistry of the auxins. Ann. Rev. Plant Physiol. 3, 71–75 (1952).CrossRefGoogle Scholar
  66. Bonner, J., and J. Thurlow: Inhibition of photoperiodic induction in Xanthium by applied auxin. Bot. Gaz. 110, 613–624 (1949).CrossRefGoogle Scholar
  67. Bonnet, C.: Recherches sur l’usage des feuilles dans les plantes, et sur quelques autres sujets relatifs a l’histoire de la végétation. Gottingue 1754, VIII, 343 p.Google Scholar
  68. Borthwick, H. A.: Light effects on tree growth and seed germination. Ohio J. Sci. 57, 357–364 (1957).Google Scholar
  69. Borth-wick, H. A., S. B. Hendricks and M. W. Parker: Action spectrum for photoperiodic control of floral initiation of a long-day plant, Wintex barley (Hordeum vulgare). Bot. Gaz. 110, 103–118 (1948).CrossRefGoogle Scholar
  70. Borth-wick, H. A., S. B. Hendricks and M. W. Parker: Action spectrum for inhibition of stem growth in dark-grown seedlings of albino and nonalbino barley (Hordeum vulgare). Bot. Gaz. 113, 95–105 (1951).CrossRefGoogle Scholar
  71. Borth-wick, H. A., S. B. Hendricks and M. W. Parker: Photo-periodism. In: Radiation biology. Edit. by A. Hollaender. Vol. 3, Chap. 10, pp. 479–517. New York: McGraw Hill Book Company 1956.Google Scholar
  72. Borthwick, H. A., S. B. Hendricks, M. W. Parker, E. H. Toole and V. K. Toole: A reversible photoreaction controlling seed germination. Proc. nat. Acad. Sci. (Wash.) 38, 662–666 (1952).CrossRefGoogle Scholar
  73. Borthwick, H. A., S. B. Hendricks, E. H. Toole and V. K. Toole: Action of light on lettuce-seed germination. Bot. Gaz. 115, 205–225 (1954).CrossRefGoogle Scholar
  74. Bünning, E., u. H. Mohr: Das Aktionsspektrum des Lichteinflusses auf die Keimung von Farnsporen. Naturwiss. 42, 212–213 (1955).CrossRefGoogle Scholar
  75. Burkholder, P. R.: The role of light in the life of plants. I. Light and physiological processes. II. The influence of light upon growth and differentiation. Bot. Review 2, 1–52, 97–172 (1936).CrossRefGoogle Scholar
  76. Burström, H.: Physics of cell elongation. In: Handbuch der Pflanzenphysiologie. Edit. by W. Ruhland, Bd. XIV, S.285–310. Berlin-Göttingen-Heidelberg: Springer 1961.Google Scholar
  77. Butler, W. L., K. H. Norris, H. W. Siegelman and S. B. Hendricks: Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants. Proc. nat. Acad. Sci. (Wash.) 45, 1703–1708 (1959).CrossRefGoogle Scholar
  78. Cajlachjan, M. C.: On the mechanism of photoperiodic reaction. C. R. (Doklady) Acad. Sci. URSS. 1, 89–93 (1936).Google Scholar
  79. Caspary, R.: Bulliarda aquatica D. C. Schr. kgl. physik. Ökonom. Ges. Königsberg 1, (1860), 66–91 (1861).Google Scholar
  80. Cassini, H.: Premier mémoire sur la graminologie, contenant l’analyse de l’embryon des graminées. J. Phys., Chim. Hist. Nat. 91, 321–346, 420–460 (1820).Google Scholar
  81. Cathey, H. M., and H. A. Borthwick: Photoreversibility of floral initiation in chrysanthemum. Bot. Gaz. 119, 71–76 (1957).CrossRefGoogle Scholar
  82. Crocker, W.: Effect of the visible spectrum upon the germination of seeds and fruits. In: Biological effects of radiation. Edit. by B. M. Duggar. Vol. II, pp. 791–827. New York: McGraw Hill Book Company 1936.Google Scholar
  83. Crocker, W.: Growth of plants. 459 pp. New York: Reinhold Publ. Corp. 1948.Google Scholar
  84. Denffer, D. v., u. H. Gründler: Über wuchsstoffinduzierte Blühhemmung bei Langtagpflanzen. Biol. Zbl. 69, 272–282 (1950).Google Scholar
  85. Downs, R. J.: Photoreversibility of leaf and hypocotyl elongation of dark-grown Red Kidney bean seedlings. Plant Physiol. 30, 468–473 (1955).CrossRefPubMedGoogle Scholar
  86. Downs, R. J.: Photoreversibility of flower initiation. Plant Physiol. 31, 279–284 (1956).CrossRefPubMedGoogle Scholar
  87. Downs, R. J., and H. A. Borthwick: Effects of photoperiod on the growth of trees. Bot. Gaz. 117, 310–326 (1956).CrossRefGoogle Scholar
  88. Downs, R. J., S. B. Hendricks and H. A. Borthwick: Photo-reversible control of elongation of Pinto beans and other plants under normal conditions of growth. Bot. Gaz. 118, 199–208 (1957).CrossRefGoogle Scholar
  89. Du Buy, H. G., u. E. Nuernbergk: Weitere Untersuchungen über den Einfluß des Lichtes auf das Wachstum von Koleoptile und Meso-kotyl bei Avena sativa. Proc. kon. ned. Akad. Wet. 32, 808–817 (1929).Google Scholar
  90. Evenari, M.: Germination inhibitors. Bot. Review 15, 153–194 (1949).CrossRefGoogle Scholar
  91. Evenari, M.: Seed germination. In: Radiation biology. Edit. by A. Hollaender. Vol. III, pp. 519–549. New York: McGraw Hill Book Company 1956.Google Scholar
  92. Flint, L. H., and E. D. McAlister: Wavelengths of radiation in the visible spectrum inhibiting germination of light-sensitive lettuce seed. Smithson. Misc. Coll. 94 (5), 1–11 (1935).Google Scholar
  93. Flint, L. H., and E. D. McAlister: Wavelengths of radiation in the visible spectrum promoting the germination of light-sensitive lettuce seed. Smithson. Misc. Coll. 96 (2), 1–7 (1937).Google Scholar
  94. Fortanier, E. J.: Some observations on the influence of spectral regions of light on stem elongation, flower bud elongation, flower bud opening and leaf movement in Arachis hypogea L. Meded. Land-bou. Wageningen 54, 103–114 (1954).Google Scholar
  95. Garner, W. W.: Photoperiodism. In: Biological effects of radiation. Edit. by B. M. Duggar. Vol. II, pp. 677–713. New York: McGraw Hill Book Company 1936.Google Scholar
  96. Garner, W. W., and H. A. Allard: Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J. agric. Res. 18, 553–606 (1920).Google Scholar
  97. Goodwin, R. H.: On the inhibition of the first internode of Avena by light. Amer. J. Bot. 28, 325–332 (1941).CrossRefGoogle Scholar
  98. Goodwin, R. H., and O. V. H. Owens: The effectiveness of the spectrum in Avena internode inhibition. Bull. Torrey bot. Club 78, 11–21 (1951).CrossRefGoogle Scholar
  99. Hamner, K. C.: Photoperiodism in plants. Ann. Rev. Biochem. 13, 575–590 (1944).CrossRefGoogle Scholar
  100. Hamner, K. C., and J. Bonner: Photoperiodism in relation to hormones as factors in floral initiation and development. Bot. Gaz. 100, 388–431 (1938).CrossRefGoogle Scholar
  101. Harder, R.: Vegetative and reproductive development of Kalanchoë blossfeldiana as influenced by photoperiodism. Symp. Soc. exp. Biol. 2, 117–138 (1948).Google Scholar
  102. Harder, R., u. G. Gümmer: Über die untere kritische Tageslänge bei der Kurztagpflanze Kalanchoë blossfeldiana. Planta (Berl.) 35, 88–99 (1947).CrossRefGoogle Scholar
  103. Hendricks, S. B., and H. A. Borthwick: Photoresponsive growth. In: Aspects of synthesis and order in growth. Edit. by D. Rudnick. pp. 149–169. Princeton: Princeton University Press 1954.Google Scholar
  104. Hendricks, S. B., and H. A. Borthwick: Photocontrol of plant development by the simultaneous excitations of two interconvertible pigments. Proc. nat. Acad. Sci. (Wash.) 45, 344–349 (1959 a).CrossRefGoogle Scholar
  105. Hendricks, S. B., and H. A. Borthwick: Photocontrol of plant development by the simultaneous excitation of two interconvertible pigments. II. Theory and control of anthocyanin synthesis. Bot. Gaz. 120, 187–193 (1959b).CrossRefGoogle Scholar
  106. Hendricks, S. B., H. A. Borthwick and K.J. Downs: Pigment conversion in the formative responses of plants to radiation. Proc. nat. Acad. Sci. (Wash.) 42, 19–26 (1956).CrossRefGoogle Scholar
  107. Hendricks, S. B., E. H. Toole, V. K. Toole and H. A. Borthwick: Photocontrol of plant development by the simultaneous excitations of two interconvertible pigments. III. Interaction with seed germination and axis elongation. Bot. Gaz. 121, 1–8 (1959).CrossRefGoogle Scholar
  108. Hygen, G.: Fotoperiodiske reaksjoner hos alger. Blyttia 1, 1–6 (1948).Google Scholar
  109. Inge, F. D., and W. E. Loomis: Growth of the first internode of the epicotyl in maize seedlings. Amer. J. Bot. 24, 542–547 (1937).CrossRefGoogle Scholar
  110. Isikawa, S.: Light sensitivity against germination. I. “Photoperiodism” of seeds. Bot. Mag. (Tokyo) 67, 51–56 (1954).Google Scholar
  111. Isikawa, S., and T. Oohusa: Effects of light upon the germination of spores of ferns. II. Two light periods of Dryopteris crassirhizoma Nakai. Bot. Mag. (Tokyo) 69, 132–137 (1956).Google Scholar
  112. Isikawa, S., and G. Shimogawara: Effects of light upon the germination of forest trees. (I) Light sensitivity and its degree. J. Jap. Forestry Soc. 36, 317–324 (1954).Google Scholar
  113. Johnston, E. S.: Growth of Avena coleoptile and first internode in different wave-length bands of the visible spectrum. Smithson. Misc. Coll. 96 (6), 1–19 (1937).Google Scholar
  114. Jones, M. B., and L. F. Bailey: Light effects on the germination of seeds of henbit (Lamium amplexicaule L.) Plant Physiol. 31, 347–349 (1956).CrossRefPubMedGoogle Scholar
  115. Klein, W. H.: Interaction of growth factors with the photoprocess in seedling growth. Proc. Nat. Res. Council Symposium on Plant and animal photoperiodism and related phenomena. Edit. by R. B. Withrow. Gatlinburg, Tennessee. Scheduled for publication in 1958.Google Scholar
  116. Klein, W. H., R. B. Withrow and V. B. Elstad: Response of the hypocotyl hook of bean seedlings to radiant energy and other factors. Plant Physiol. 31, 289–294 (1956).CrossRefPubMedGoogle Scholar
  117. Knott, J. E.: Effect of a localized photoperiod on spinach. Proc. Amer. Soc. hort. Sci. 31, 152–154 (1934).Google Scholar
  118. Kohlbecker, R.: Die Abhängigkeit des Längenwachstums und der phototropi-schen Krümmungen von der Lichtqualität bei Keimwurzeln von Sinapis alba. Z. Bot. 45, 507–524 (1957).Google Scholar
  119. Lang, A.: Physiology of flowering. Ann. Rev. Plant. Physiol. 3, 265–306 (1952).CrossRefGoogle Scholar
  120. Lang, A.: Stem elongation in a rosette plant induced by gibberellic acid. Naturwiss. 11, 257–258 (1956 a).CrossRefGoogle Scholar
  121. Lang, A.: Induction of flower formation in biennial Hyoscyamus by treatment with gibberel-lin. Naturwiss. 12, 284–285 (1956b).CrossRefGoogle Scholar
  122. Lang, A., and G. Melchers: Auslösung von Blütenbildung bei Langtagpflanzen unter Kurztagbedingungen durch Aufpfropfung von Kurztagpflanzen. Z. Naturforsch. 3b, 108–111 (1948).Google Scholar
  123. Liverman, J. L.: The physiology and biochemistry of flowering. Doctoral thesis, Calif. Inst. Tech. 1952.Google Scholar
  124. Liverman, J. L.: The physiology of flowering. Ann. Rev. Plant Physiol. 6, 177–211 (1955).CrossRefGoogle Scholar
  125. Liverman, J. L., and J. Bonner: The interaction of auxin and light in the growth response of plants. Proc. nat. Acad. Sci. (Wash.) 39, 905–916 (1953).CrossRefGoogle Scholar
  126. Liverman, J. L., M. P. Johnson and L. Starr: Reversible photoreaction controlling expansion of etiolated bean leaf disks. Science 121, 440–441 (1955).CrossRefPubMedGoogle Scholar
  127. Lona, F.: Dominare i fenomeni di fioritura. Humus 6, 6–10 (1950).Google Scholar
  128. MacDougal, D. T.: The influence of light and darkness upon growth and development. New York bot. Garden Mem. 2, 1–319 (1903).Google Scholar
  129. Mahler, H. R.: Studies on the fatty acid oxidizing system of animal tissues. IV. The prosthetic group of butyryl coenzyme A dehydrogenase. J. biol. Chem. 206, 13–26 (1954).PubMedGoogle Scholar
  130. Meischke, D.: Über den Einfluß der Strahlung auf Licht und Dunkelkeimer. Jb. wiss. Bot. 83, 359–405 (1936).Google Scholar
  131. Miller, C. O.: Relationship of the cobalt and light effects on expansion of etiolated bean discs. Plant Physiol. 27, 408–412 (1952).CrossRefPubMedGoogle Scholar
  132. Mohr, H.: Die Beeinflussung der Keimung von Farnsporen durch Licht und andere Faktoren. Planta (Berl.) 46, 534–551 (1956).CrossRefGoogle Scholar
  133. Mohr, H.: Der Einfluß monochromatischer Strahlung auf das Längenwachstum des Hypocotyls und auf die Anthocyanbildung bei Keimlingen von Sinapis alba L. (= Brassica alba Boiss.). Planta (Berl.) 49, 389–405 (1957).CrossRefGoogle Scholar
  134. Moškov, B. S.: Role of leaves in photoperiodic reaction of plants. Bull. Appl. Bot. Genet. and Plant Breeding USSR. A 17, 25–30 (1936).Google Scholar
  135. Nakayama, S. H. A. Borthwick and S. B. Hendricks: Failure of photoreversible control of flowering in Pharbitis nil Bot. Gaz. 121, 237–243 (1960).CrossRefGoogle Scholar
  136. Parker, M. W., and H. A. Borthwick: Floral initiation in Biloxi soybeans as influenced by photosynthetic activity during the induction period. Bot. Gaz. 102, 256–268 (1940).CrossRefGoogle Scholar
  137. Parker, M. W., S. B. Hendricks and H. A. Borthwick: Action spectrum for the photoperiodic control of floral initiation of the long-day plant Hyoscyamus niger. Bot. Gaz. 111, 242–252 (1950).CrossRefGoogle Scholar
  138. Parker, M. W., S. B. Hendricks, H. A. Borthwick and N. J. Scully: Action spectrum for the photoperiodic control of floral initiation of short-day plants. Bot. Gaz. 108, 1–26 (1946).CrossRefGoogle Scholar
  139. Parker, M. W., S. B. Hendricks, H. A. Borthwick and F. W. Went: Spectral sensitivities for leaf and stem growth of etiolated pea seedlings and their similarity to action spectra for photoperiodism. Amer. J. Bot. 36, 194–202 (1949).CrossRefGoogle Scholar
  140. Pasteur, L.: Études sur la bière, p. 315. Paris: Gauthier Villars 1876.Google Scholar
  141. Piringer, A. A., and P. H. Heinze: Effect of light on the formation of a pigment in the tomato fruit cuticle. Plant Physiol. 29, 467–472 (1954).CrossRefPubMedGoogle Scholar
  142. Platt, J. R.: Electronic structure and excitation of polyenes and porphyrins. In: Radiation biology. Edit. by A. Hollaender. Vol. III, pp. 71–123. New York: McGraw Hill Book Company 1956.Google Scholar
  143. Ray, J.: Historia plantarum, species hactenus editas aliasque insuper multas noviter inventas et descriptas complectens. 3 vol. Londini 1686–1704.Google Scholar
  144. Remer, W.: Der Einfluß des Lichtes auf die Keimung der Samen von Phacelia tanacetifolia. Ber. dtsch. bot. Ges. 22, 328–339 (1904).Google Scholar
  145. Resühr, B.: Beiträge zur Lichtkeimung von Amaranthus caudatus L. and Phacelia tanacetifolia Benth. Planta (Berl.) 30, 471–506 (1939).CrossRefGoogle Scholar
  146. Sale, P. J. M., and D. Vince: Effects of wave-length and time of irradiation on inter-node length in Pisum sativum and Tropaeolum majus. Nature (Lond.) 183, 1174–1175 (1959).CrossRefGoogle Scholar
  147. Salisbury, F. B.: Growth regulators and flowering. I. Survey methods. Plant Physiol. 32, 600–608 (1957).CrossRefPubMedGoogle Scholar
  148. Schneider, C. L.: The effect of red light on growth of the Avena seedling with special reference to the first internode. Amer. J. Bot. 28, 878–886 (1941).CrossRefGoogle Scholar
  149. Siegelman, H. W., and S. B. Hendricks: Photocontrol of anthocyanin synthesis in turnip and red cabbage seedlings. Plant Physiol. 32, 393–398 (1957).CrossRefPubMedGoogle Scholar
  150. Stolwijk, J. A. J.: Wavelength dependence of photomorphogenesis in plants. Meded. Landbouwhogesch., Wageningen 54, 181–244 (1954).Google Scholar
  151. Thompson, B. P.: The effect of light on the rate of development of Avena seedlings. Amer. J. Bot. 37, 284–291 (1950).CrossRefGoogle Scholar
  152. Thompson, B. P.: The relation between age at time of exposure and response of parts of the Avena seedling to light. Amer. J. Bot. 38, 635–638 (1951).CrossRefGoogle Scholar
  153. Thompson, B. P.: The effect of light on cell division and cell elongation in seedlings of oats and peas. Amer. J. Bot. 41, 326–332 (1954).CrossRefGoogle Scholar
  154. Toole, E. H.: Relation of light to the germination of seeds. Proc. Nat. Res. Council Symposium on Plant and animal photoperiodism and related phenomena. Edit. by R. B. Withrow. Gatlinburg, Tennessee. Scheduled for publication in 1958.Google Scholar
  155. Toole, E. H., S. B. Hendricks, H. A. Borthwick and V. K. Toole: Physiology of seed germination Ann. Rev. Plant Physiol. 7, 299–324 (1956).CrossRefGoogle Scholar
  156. Toole, E. H., V. K. Toole, H. A. Borthwick and S. B. Hendricks: Interaction of temperature and light in germination of seeds. Plant Physiol. 30, 473–478 (1955).CrossRefPubMedGoogle Scholar
  157. Voth, P. D., and K. C. Hamner: Responses of Marchantía polymorpha to nutrient supply and photoperiod. Bot. Gaz. 102, 169–205 (1940).CrossRefGoogle Scholar
  158. Warburg, O., u. E. Negelein: Über das Absorptionsspektrum des Atmungsferments. Biochem. Z. 214, 6–4–100 (1929).Google Scholar
  159. Warburg, O., u. E. Negelein Über den Einfluß der Wellenlänge auf die Verteilung des Atmungsferments. Biochem. Z. 193, 339–346 (1928).Google Scholar
  160. Wareing, P. F.: Growth studies in woody species. I. Photoperiodism in first-year seedlings of Pinus sylvestris. Physiol. Plantarum (Cph.) 3, 258–276 (1950a).CrossRefGoogle Scholar
  161. Warburg, O., u. E. Negelein Über den Einfluß der Wellenlänge auf die Verteilung des Atmungsferments. Biochem. Z. 193, 339–346 (1928).Google Scholar
  162. Wassink, E. C., and J. A. J. Stolwijk: Effects of light quality on plant growth. Ann. Rev. Plant. Physiol. 7, 373–400 (1956).CrossRefGoogle Scholar
  163. Weintraub, R. L., and E. D. McAlister: Developmental physiology of the grass seedling. I. Inhibition of the mesocotyl of Avena sativa by continuous exposure to light of low intensities. Smithson. Misc. Coll. 101 (17), 1–10 (1942).Google Scholar
  164. Weintraub, R. L., and L. Price: Developmental physiology of the grass seedling. II. Inhibition of mesocotyl elongation in various grasses by red and by violet light. Smithson. Misc. Coll. 106 (21), 1–15 (1947).Google Scholar
  165. Withrow, R. B., W. H. Klein and V. Elstad: Action spectra of photomorphogenic induction and its photoinactivation. Plant Physiol. 32, 453–462 (1957).CrossRefPubMedGoogle Scholar
  166. Zeevaart, J. A. D.: Studies on flowering by means of grafting. I. Photoperiodic induction as an irreversible phenomenon in Perilla. Proc. kon. ned. Akad. Wet., Ser. C 60, 324–331 (1957).Google Scholar
  167. Åberg, B.: Physiologische und ökologische Studien über die pflanzliche Photomorphose. Symbolae bot. Upsalienses 8, 1–189 (1943).Google Scholar
  168. Allard, H.A.: Gigantism in Nicotiana tabacum and its alternative inheritance. Amer. Naturalist 53, 218–233 (1919).CrossRefGoogle Scholar
  169. Allard, H.A.: Response of the woody plants Hibiscus syriacus, Malvariscus conzattii and Bouginvillea glabra to length of day. J. agric. Res. 51, 27–34 (1935).Google Scholar
  170. Allard, H.A.: Complete or partial inhibition of flowering in certain plants when days are too short or too long. J. agric. Res. 57, 775–789 (1938).Google Scholar
  171. Allard, H.A., and W. W. Garner: Observations on responses to length of day. U.S. Dept. Agric. Tech. Bull. 727 (1940).Google Scholar
  172. Allard, H.A., and W. W. Garner: Responses of some plants to equal and unequal ratios of light and darkness in cycles ranging from 1 hour to 72 hours. J. agric. Res. 63, 305–330 (1941).Google Scholar
  173. Arthur, J. M.: Radiation and anthocyanin pigments. In B. M. Duggar (editor), Biological Effects of Radiation, Vol. 2, pp. 1109–1118. New York: McGraw Hill Book Co. 1936.Google Scholar
  174. Arthur, J. M., J. D. Guthrie and J. M. Newell: Some effects of artificial climates on the growth and chemical composition of plants. Amer. J. Bot. 17, 416–482 (1930).CrossRefGoogle Scholar
  175. Ashby, E.: Studies in the morphogenesis of leaves. VI. Some effects of length of day upon leaf shape in Ipomoea caerulea. New Phytologist 49, 375–387 (1950).CrossRefGoogle Scholar
  176. Avery jr., G. S., P. R. Burkholder and Harriet B. Creighton: Growth hormone in terminal shoots of Nicotiana in relation to light. Amer. J. Bot. 24, 666–673 (1937).CrossRefGoogle Scholar
  177. Bailey, L. H.: Greenhouse notes for 1892/93. I. Third report upon electroculture. Cornell N. Y. Agr. Exp. Stat. Bull. 55, 147–157 (1893).Google Scholar
  178. Bakhuyzen, H. L. van de Sande: Flowering and flowering hormones (one single scheme for both long-day and short-day plants). IIA and B. Photoperiodism in long-day plants. Proc. kon. ned. Akad. Wet. C 54, 603–623 (1951).Google Scholar
  179. Bakhuyzen, H. L. van de Sande: Flowering and flowering hormones (one single scheme for both long-day and short-day plants). IIIA. Photoperiodism in short-day plants. Proc. kon. ned. Akad. Wet. C 56, 164–184 (1953).Google Scholar
  180. Barber, H.N., and D. M. Paton: A gene-controlled flowering inhibitor in Pisum. Nature (Lond.) 169, 592 (1952).CrossRefGoogle Scholar
  181. Bawden, F.C.: Plant Viruses and Virus Diseases, 3rd ed. Waltham, Mass.: Chronica Botanica Co. 1950. 335 p.Google Scholar
  182. Behrens, G.: Blüten- und Gestaltsbildung bei Chrysanthemum und Sempervivum unter photoperiodischen Einflüssen. Biol. Zbl. 68, 1–32 (1949).Google Scholar
  183. Biddulph, O.: Histological variations in Cosmos in relation to photoperiodism. Bot. Gaz. 97, 139–155 (1935).CrossRefGoogle Scholar
  184. Black, M., and P. F. Wareing: Growth studies in woody species. VII. Photoperiodic control of germination in Betula pubescens Ehrh. Physiol. Plantarum (Cph.) 8, 300–316 (1955).CrossRefGoogle Scholar
  185. Blaney, L. T., and K. C. Hamner: Interrelations among effects of temperature, photoperiod, and dark period on floral initiation of Biloxi soybean. Bot. Gaz. 119, 10–24 (1957).CrossRefGoogle Scholar
  186. Bocchi, A., F. Lona and R. M. Sachs: Photoperiodic induction of disbudded Perilla plants. Plant Physiol. 31, 480–482 (1956).CrossRefPubMedGoogle Scholar
  187. Bonner, J.: Further experiments on flowering in Xanthium. Bot. Gaz. 110, 625–627 (1949).CrossRefGoogle Scholar
  188. Bonner, J., and D. Bonner: Notes on induction of flowering in Xanthium. Bot. Gaz. 110, 154–155 (1948).CrossRefGoogle Scholar
  189. Bonner, J., and J. Liverman: Hormonal control of flower initiation, Chap. 14 in W. E. Loomis (editor), Growth and Differentiation in Plants, pp. 283 to 308. Ames, Iowa: Iowa State College Press 1953. 446 pp.Google Scholar
  190. Bonner, J., and J. Thurlow: Inhibition of photoperiodic induction in Xanthium by applied auxin. Bot. Gaz. 110, 613–624 (1949).CrossRefGoogle Scholar
  191. Bonner, W., and J. Bonner: The role of carbon dioxide in acid formation by succulent plants. Amer. J. Bot. 35, 113–117 (1948).CrossRefGoogle Scholar
  192. Booth, A.: Non-hormonal growth promotion shown by aqueous extracts. J. exp. Bot. 9, 306–310 (1958).CrossRefGoogle Scholar
  193. Borgström, G.: Anthogenesis in etiolated pea seedlings. Bot. Notiser 830–839 (1939).Google Scholar
  194. Borthwick, H.A., S.B. Hendricks and M.W. Parker: Action spectrum for photoperiodic control of floral initiation of a long-day plant, Wintex barley. Bot. Gaz. 110, 103–118 (1948).CrossRefGoogle Scholar
  195. Borthwick, H.A., S.B. Hendricks and M.W. Parker: Action spectrum for inhibition of stem growth in dark-grown seedlings of albino and non-albino barley (Hordeum vulgare). Bot. Gaz. 113, 95–105 (1951).CrossRefGoogle Scholar
  196. Borthwick, H.A., S.B. Hendricks and M.W. Parker The reaction controlling floral initiation. Proc. nat. Acad. Sci. (Wash.) 38, 929–934 (1952).CrossRefGoogle Scholar
  197. Borthwick, H.A., S.B. Hendricks and M.W. Parker Photoperiodism in Vol. III Radiation Biology. New York: McGraw-Hill Book Co. 1956.Google Scholar
  198. Borthwick, H.A., S.B. Hendricks, M.W. Parker, E.H. Toole and V. K. Toole: A reversible photoreaction controlling seed germination. Proc. nat. Acad. Sci. (Wash.) 38, 662–666 (1952).CrossRefGoogle Scholar
  199. Borthwick, H.A., S.B. Hendricks, E.H. Toole and V. K. Toole: Action of light on lettuce-seed germination. Bot. Gaz. 115, 205–225 (1954).CrossRefGoogle Scholar
  200. Borthwick, H.A., and M.W. Parker: Effectiveness of photoperiodic treatments of plants of different age. Bot. Gaz. 100, 245–249 (1938a).CrossRefGoogle Scholar
  201. Borthwick, H.A., and M.W. Parker: Photoperiodic perception in Biloxi soybeans. Bot. Gaz. 100, 374–387 (1938b).CrossRefGoogle Scholar
  202. Borthwick, H.A., and M.W. Parker: Photoperiodic responses of several varieties of soybeans. Bot. Gaz. 101, 341–365 (1939).CrossRefGoogle Scholar
  203. Borthwick, H.A., and M.W. Parker Floral initiation of Biloxi soybeans as influenced by age and position of leaf receiving photoperiodic treatment. Bot. Gaz. 101, 806–817 (1940).CrossRefGoogle Scholar
  204. Borthwick, H.A., M.W. Parker and P. H. Heinze: Influence of localized low temperature on Biloxi soybean during photoperiodic induction. Bot. Gaz. 102, 792–800 (1941).CrossRefGoogle Scholar
  205. Borthwick, H.A., M.W. Parker and P. H. Heinze: Effect of photoperiod and temperature on development of barley. Bot. Gaz. 103, 326–341 (1942).CrossRefGoogle Scholar
  206. Borthwick, H. A., M. W. Parker and S. B. Hendricks: Wave length dependance and the nature of photoperiodism. In: Vernalization and Photo-periodism, edit, by A. E. Murneek and R. O. Whyte, pp. 71–78. Waltham, Mass.: Chronica Botanica Co. 1948. 196 pp.Google Scholar
  207. Borthwick, H. A., M. W. Parker and S. B. Hendricks Recent developments in the control of flowering by photo-period. Amer. Naturalist 84, 117–134 (1950).CrossRefGoogle Scholar
  208. Borthwick, H.A., M.W. Parker and N. J. Scully: Effects of photoperiod and temperature on growth and development of koksaghyz. Bot. Gaz. 105, 100–107 (1943).CrossRefGoogle Scholar
  209. Borthwick, H.A., and N. J. Scully: Photoperiodic responses of hemp. Bot. Gaz. 116, 14–29 (1954).CrossRefGoogle Scholar
  210. Boysen-Jensen, P.: Growth Hormones in Plants. Translated by G. S. Avery jr. and P. R. Burkholder. New York: McGraw-Hill Book Co. 1936. 268 pp.Google Scholar
  211. Bremer, A. H.: Einfluß der Tageslänge auf die Wachstumsphasen des Salats. Genetische Untersuchungen. Gartenbauwiss. 4, 469–483 (1931).Google Scholar
  212. Brian, P. W.: The role of gibberellin-like hormones in regulation of plant growth and flowering. Nature (Lond.) 181, 1122–1123 (1958).CrossRefGoogle Scholar
  213. Brian, P. W.: Effects of gibberellins on plant growth and development. Biol. Rev. 34, 37–84 (1959).CrossRefGoogle Scholar
  214. Bünning, E.: Die endonome Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Ber. dtsch. bot. Ges. 54, 590–607 (1937).Google Scholar
  215. Bünning, E.: Endonome Tagesrhythmik und Photoperiodismus bei Kurztagspflanzen. Biol. Zbl. 64, 161–183 (1944 a).Google Scholar
  216. Bünning, E.: Die allgemeinen Grundlagen der photoperiodischen Empfindlichkeit. Flora (Jena) 38, 93–119 (1944b).Google Scholar
  217. Bünning, E.: Die entwicklungsphysiologische Bedeutung der endonomen Tagesrhythmik bei den Pflanzen. Naturwiss. 33, 271–274 (1946).CrossRefGoogle Scholar
  218. Bünning, E. Weitere Versuche über die Beziehung zwischen endogener Tagesrhythmik und Photoperiodismus. Z. Naturforsch. 3b, 457–464 (1948).Google Scholar
  219. Bünning, E.: Über die photophile und skotophile Phase der endogenen Tagesrhythmik. Planta (Beri.) 38, 521–540 (1950).CrossRefGoogle Scholar
  220. Bünning, E.: Entwicklungs- und Bewegungsphysiologie der Pflanzen, 3rd ed. Berlin: Springer 1953.CrossRefGoogle Scholar
  221. Bünning, E.: Leaf growth under constant conditions and as influenced by light-dark cycles, pp. 119–126. In F. L. Mlithorpe (editor), The Growth of Leaves. London: Butterworth Scientific Publications 1956. 253 pp.Google Scholar
  222. Bünsow, R., u. R. Harder: Blütenbildung von Bryophyllum durch Gibberellin. Naturwiss. 43, 479–480 (1956 a).CrossRefGoogle Scholar
  223. Bünsow, R., u. R. Harder: Blütenbildung von Lapsana durch Gibberellin. Naturwiss. 43, 527 (1956b).CrossRefGoogle Scholar
  224. Bünsow, R., u. R. Harder: Blütenbildung von Adonis und Budbeckia durch Gibberellin. Naturwiss. 44, 453–454 (1957).CrossRefGoogle Scholar
  225. Bukovac, M. J., and S. H. Wittwer: Gibberellin and higher plants. II. Induction of flowering in biennials. Quart. Bull. Mich. Agric. Exp. Stat. 39, 650–660 (1957).Google Scholar
  226. Burkholder, P. R.: The role of light in the life of plants. I. Light and physiological processes. II. The influence of light upon growth and differentiation. Bot. Rev. 2, 1–52, 97–172 (1936).CrossRefGoogle Scholar
  227. Butler, W. L., K. H. Norris, H. W. Siegelman and S. B. Hendricks: Detection, assay, and preliminary purification of the pigment controlling photoresponsive development in plants. Proc. nat. Acad. Sci. (Wash.) 45, 1703–1708 (1959).CrossRefGoogle Scholar
  228. Cajlachjan, M. C.: The age of plants and the photoperiodic reaction. C. R. (Doklady) Acad. Sci. URSS. 6, 306–314 (1933).Google Scholar
  229. Cajlachjan, M. C.: On the mechanism of photoperiodic reaction C. R. (Doklady) Acad. Sci. URSS. 1, 89–93 (1936a).Google Scholar
  230. Cajlachjan, M. C.: On the hormonal theory of plant development. C. R. (Doklady) Acad. Sci. URSS. 3, 442–447 (1936b).Google Scholar
  231. Cajlachjan, M. C.: New facts in support of the hormonal theory of plant development. C. R. (Doklady) Acad. Sci. URSS. 4, 79–83 (1936c).Google Scholar
  232. Cajlachjan, M. C.: Hormone Theory of Plant Development. (Moscow-Leningred) Acad. Sci. URSS. 1937. 198 pp.Google Scholar
  233. Cajlachjan, M. C.: Motion of blossom hormone in girdled and graftad plants. C. R. (Doklady) Acad. Sci. 18, 607–612 (1938).Google Scholar
  234. Cajlachjan, M. C.: Translocation of flowering hormones across various plant organs. I. Across the leaf. C. R. (Doklady) Acad. Sci. URSS. 27, 160–163 (1940).Google Scholar
  235. Cajlachjan, M. C.: Photoperiodism of chlorotic plants. C. R. (Doklady) Acad. Sci. URSS. 31, 945–948 (1941a).Google Scholar
  236. Cajlachjan, M. C.: Translocation of flowering hormones in the plant as affected by temperature and narcotics. C. R. (Doklady) Acad. Sci. URSS. 31, 949–952 (1941b).Google Scholar
  237. Cajlachjan, M. C.: Flowering in different plant species as a response to nitrogenous food. C. R. (Doklady) Acad. Sci. URSS. 47, 146–149 (1945a).Google Scholar
  238. Cajlachjan, M. C.: Photoperiodism of individual parts of the leaf, its halves. C. R. (Doklady) Acad. Sci. URSS. 47, 220–224 (1945b).Google Scholar
  239. Cajlachjan, M. C.: The photoperiodic receptivity of isolated plant leaves. Dokl. Akad. Nauk SSSR. (English Transi.) 118 (1–6), 9–12 (1958).Google Scholar
  240. Cajlachjan, M. C., and V. N. Lozhnikova: Effect of gibberellin-like substances extracted from leaves of different plants on growth and flowering of Budbeckia. Dokl. Akad. Nauk SSSR. (English Transi.) 128 (1–6), 267–270 (1959).Google Scholar
  241. Cajlachjan, M.C., and E. K. Lukovnikov: Development of plants growing under different light conditions as affected by mineral nutrition. C. R. (Doklady) Acad. Sci. URSS. 32, 152–155 (1941).Google Scholar
  242. Cajlachjan, M.C., and I. A. Rupcheva: Flower power of etiolated plants. C. R. (Doklady) Acad. Sci. URSS. 53, 859–862 (1946).Google Scholar
  243. Cajlachjan, M. C., and L. M. Yarkovaja: New facts in support of the hormonal theory of plant development. II. C. R. (Doklady) Acad. Sci. URSS. 15, 215–217 (1937).Google Scholar
  244. Carpenter, B. H., and R. G. Lincoln: Requirements for floral initiation of Los Angeles Xanthium. Science 129, 780–781 (1959).CrossRefPubMedGoogle Scholar
  245. Carr, D. J.: A critical experiment on Bünning’s theory of photoperiodism. Z. Naturforsch. 7 b, 570–571 (1952a).Google Scholar
  246. Carr, D. J.: The photoperiodic behavior of short-day plants. Physiol. Plantarum (Cph.) 5, 70–84 (1952b).CrossRefGoogle Scholar
  247. Carr, D. J.: On the nature of photoperiodic induction. I. Photoperiodic treatments applied to detached leaves. Physiol. Plantarum (Cph.) 6, 672–679 (1953a).CrossRefGoogle Scholar
  248. Carr, D. J.: On the nature of photoperiodic induction. II. Photoperiodic treatments of de-budded plants. Physiol. Plantarum (Cph.) 6, 680–684 (1953b).CrossRefGoogle Scholar
  249. Carr, D. J.: On the nature of the photoperiodic induction. III. The summation of the effects of inductive photoperiodic cycles. Physiol. Plantarum (Cph.) 8, 512–526 (1955).CrossRefGoogle Scholar
  250. Carr, D. J.: On the nature of photoperiodic induction. IV. Preliminary experiments on the effect of light following the inductive long dark period in Xanthium penn-sylvanicum. Physiol. Plantarum (Cph.) 10, 249–265 (1957).CrossRefGoogle Scholar
  251. Carr, D. J., A. J. McComb and L. D. Osborne: Replacement of the requirement for vernalisation in Centaurium minus Moench by gibberellic acid. Naturwiss. 44, 428–429 (1957).CrossRefGoogle Scholar
  252. Cathey, H. M., and H.A. Borthwick: Photoreversibility of floral initiation in Chrysanthemum. Bot. Gaz. 119, 71–76 (1957).CrossRefGoogle Scholar
  253. Chapman, H. W.: Tuberization in the potato plant. Physiol. Plantarum (Cph.) 11, 215–224 (1958).CrossRefGoogle Scholar
  254. Cheuvart, C.: Expériences sur la développement de Cannabis sativa L. (sexualité et pigments foliaires) à température constante et sous différents régimes de photo-périodisme. Bull. Acad. roy. Belg., Cl. Sci. 40, 1152–1168 (1954).Google Scholar
  255. Cholodny, N. G.: Internal factors of flowering. Herbage Rev. 7, 223–247 (1939).Google Scholar
  256. Chouard, P.: Une synthèse nouvelle des causes de la floraison et des théories du photopériodisme. C. R. Acad. Sci. (Paris) 216, 591–593 (1943 a).Google Scholar
  257. Chouard, P.: Facteurs distincts de floraison et d’élongation chez le Fraisier. C. R. Acad. Sci. (Paris) 217, 507–509 (1943b).Google Scholar
  258. Chouard P.: , Sur les réactions de croissance au photopériodisme. C. R. Acad. Sci. (Paris) 223, 1174–1176 (1946).Google Scholar
  259. Chouard P.: Sur le photopériodisme chez les plantes vivaces. II. Bull. Soc. bot. France 94, 399–405 (1947a).Google Scholar
  260. Chouard P.: Sur les conditions photopériodiques et thermopériodiques des divers modes de floraison des violettes. C. R. Acad. Sci. (Paris) 224, 1523–1525 (1947b).Google Scholar
  261. Chouard P.: Experiences de longue durée sur le photopériodisme; leçons qui en découlent. Mém. Soc. bot. France 96, 106–146 (1949).Google Scholar
  262. Chouard P.:: Réversibilité de l’état reproductif à l’état végétatif sous l’effet du photopériodisme. C. R. Acad. Sci. (Paris) 231, 1245–1247 (1950).Google Scholar
  263. Chouard P.: Présentation de quelques plantes en cours d’experimentation sur les facteurs de la floraison. Bull. Soc. bot. France 105, 135–136 (1958).Google Scholar
  264. Ohroboczek, E.: A study of some ecological factors influencing seed-stalk development in beets (Beta vulgaris L.). Cornell Univ. Agr. Exp. Stat. Memoir 154. 84 pp. (1934).Google Scholar
  265. Claes, H.: Die Beteiligung des dissimilatorischen Stoffwechsels an der photoperiodischen Reaktion von Hyoscyamus niger. Z. Naturforsch. 2b, 45–55 (1947).Google Scholar
  266. Claes, H.: Die Wirkung von β-ndolylessigsäure und 2,3,5-trijodbenzoesäure auf die Blütenbildung von Hyoscyamus niger. Z. Naturforsch. 7b, 50–55 (1952).Google Scholar
  267. Claes, H., u. A. Lang: Die Blütenbildung von Hyoscyamus niger in 48stündigen Licht-Dunkel-Zyklen und in Zyklen mit aufgeteilten Lichtphasen. Z. Naturforsch. 2b, 56–63 (1947).Google Scholar
  268. Clark, H. F., and K. R. Kerns: Control of flowering with phytohormones. Science 95, 536–537 (1942).CrossRefPubMedGoogle Scholar
  269. Cooke, A. R.: Auxin content during the photoinduction of short-day plants. Plant Physiol. 29, 440–444 (1954).CrossRefPubMedGoogle Scholar
  270. Cooper, J. P.: Studies on growth and development in Lolium. IV. Genetic control of heading responses in local populations. J. Ecology 42, 521–556 (1954).CrossRefGoogle Scholar
  271. Coopfr, J. P., and A. F. Money-Kyrle: Inflorescence development in Lolium during the arctic summer. Nature (Lond.) 169, 158 (1952).CrossRefGoogle Scholar
  272. Cooper, W. C.: Effect of growth substances on flowering of the pineapple under Florida conditions. Proc. Amer. Soc. hort. Sci. 41, 93–98 (1942).Google Scholar
  273. Corbett, L. C.: A study of the effect of incandescent gas light on plant growth. West Virginia Agr. Exp. Stat. Bull. 62, 77–110 (1899).Google Scholar
  274. Darwin, C.: The Power of Movement in Plants, pp. 468–482. London: John Murray 1880. 592 pp.Google Scholar
  275. Daubenmire, R. F.: Plants and Environment. A Textbook of Plant Autecology. (See pp. 241–242.) New York: John Wiley & Son 1947. 424 pp.Google Scholar
  276. Denffer, D. v.: Über das Zusammenwirken von Keimstimmung und täglicher Belichtungsdauer auf die Entwicklung von Sinapis und Hordeum. Jb. wiss. Bot. 88, 759–815 (1939).Google Scholar
  277. Denffer, D. v.: Über die photoperiodische Beeinflußbarkeit von Habitus und Sukkulenz bei einigen Crassulaceen-Arten. Jb. wiss. Bot. 89, 543–573 (1941).Google Scholar
  278. Denffer, D. v.: Blühhormon oder Blühhemmung? Neue Gesichtspunkte zur Physiologie der Blütenbildung. Naturwiss. 37, 296–301 (1950a).CrossRefGoogle Scholar
  279. Denffer, D. v.: Blühhormon oder Blühhemmung ? Neue Gesichtspunkte zur Physiologie der Blütenbildung. Naturwiss. 37, 317–321 (1950b).CrossRefGoogle Scholar
  280. Denffer, D. v., u. H. Gründler: Über wuchsstoffinduzierte Blühhemmung bei Langtagpflanzen. Biol. Zbl. 69, 272–282 (1950).Google Scholar
  281. Doorenbos, J.: Review of the literature on dormancy in buds of woody plants. Meded. Land-bouwhogeschool Wageningen 53, 1–24 (1953).Google Scholar
  282. Doorenbos, J.: Gibberellic acid substitutes for low temperature in certain varieties of Chrysanthemum. Colloq. International sur le Photo-thermo-periodism. Action des diverses radiations, des gibberellins et de quelques autres substances. Union Sci. Biol., Ser. B, No 34, 50–54 (1957).Google Scholar
  283. Doroshenko, A.: Photoperiodism and some cultivated forms in connection with their origin. Bull. Appl. Bot., Genet, and Plant Breeding (Leningrad) 17, 167–220 (1927).Google Scholar
  284. Dostal, R., u. M. Hošek: Über den Einflußvon Heteroauxin auf die Morphogenese bei Circaea (das Sachssche Phänomen). Flora (Jena) 31, 263–286 (1937).Google Scholar
  285. Downs, R. J.: Photoreversibility of leaf and hypocotyl elongation of dark-grown Red Kidney bean seedlings. Plant Physiol. 30, 468–472 (1955).CrossRefPubMedGoogle Scholar
  286. Downs, R. J.: Photo-reversibility of flower initiation. Plant Physiol. 31, 279–284 (1956).CrossRefPubMedGoogle Scholar
  287. Downs, R. J., and H. A. Borthwick: Effects of photoperiod on growth of trees. Bot. Gaz. 117, 310–326 (1956).CrossRefGoogle Scholar
  288. Downs, R. J., H.A. Borthwick and A. A. Piringer: Comparison of incandescent and fluorescent lamps for lengthening photoperiods. Proc. Amer. Soc. hort. Sci. 71, 568–578 (1958).Google Scholar
  289. Downs, R. J., S. B. Hendricks and H. A. Borthwick: Photoreversible control of elongation of pinto beans and other plants under normal conditions of growth. Bot. Gaz. 118, 199–208 (1957).CrossRefGoogle Scholar
  290. Driver, C.M., and J. G. Hawkes: Photoperiodism in potato. Imp. Bur. Plant Breed. Gen., Cambridge, England 1943.Google Scholar
  291. Eddy, B. P., and L. W. Mapson: Some factors affecting anthocyanin synthesis in cress seedlings. Biochem. J. 49, 694–699 (1951).PubMedGoogle Scholar
  292. Eguchi, T.: Studies on the photoperiodic responses of plants before and after the differentiation of flower buds. [In Japanese with English summary.] Bull. Chiba Coll. Hort. (Matsudo, Nippon) 4, 1–112 (1937); also in Proc. Imp. Acad. Japan 13, 332–333 (1937).Google Scholar
  293. Ehrenberg, M.: Einfluß verschiedenen Licht-Dunkelwechsels auf die Rhythmik der Phosphataseaktivität in den Blättern von Kalanchoë blossfeldiana. Planta (Berl.) 43, 528–536 (1954).CrossRefGoogle Scholar
  294. Elenev, L.K.: The effect of photoperiodicity on tung trees. [Russian with English summary.] Soviet Subtropics No 6 (46), 51–52 (1938).Google Scholar
  295. Emerson, R. A.: Control of flowering in teosinte. J. Hered. 15, 41–50 (1924).Google Scholar
  296. Evans, L. T.: Lolium temulentum L., a long-day plant requiring only one inductive photocycle. Nature (Lond.) 182, 197–198 (1958).CrossRefGoogle Scholar
  297. Evenari, M., G. Neumann and G. Stein: Action of blue light on the germination of seeds. Nature (Lond.) 180, 609–610 (1957).CrossRefGoogle Scholar
  298. Fabian, Inge: Beiträge zum Lang- und Kurztagsproblem. Z. Bot. 33, 305–357 (1938).Google Scholar
  299. Fischer, H.: Über die Blütenbildung in ihrer Abhängigkeit vom Licht und über die blütenbildenden Substanzen. Flora (Jena) 94, 478–490 (1905).Google Scholar
  300. Fischer, H.: Zur Frage der Kohlensäureernährung der Pflanze. Gartenflora 65, 232–237 (1916).Google Scholar
  301. Flammarion, Camille: Physical and meterological researches principally on solar rays, made at the station of agricultural climatology at the observatory of Juvisy. Exp. Sta. Rec. 10, 103–114 (1899).Google Scholar
  302. Flint, L. H., and E. D. McAlister: Wavelengths of radiation in the visible spectrum inhibiting the germination of light-sensitive lettuce seed. Smithson. Misc. Publ. 94 (5), 1–11 (1935).Google Scholar
  303. Foster, A. S.: Investigations on the morphology and comparative history of development of foliar organs. III. Cataphyll and foliage-leaf ontogeny in the black hickory (Carya buckleyi var. Arkansana). Amer. J. Bot. 19, 75–99 (1932).CrossRefGoogle Scholar
  304. Fuller, H. J.: Photoperiodic responses of Chenopodium and Amaranthus. Amer. J. Bot. 36, 175–179 (1949).CrossRefGoogle Scholar
  305. Funke, G. L.: Photoperiodicity of flowering with supplemental light. In A. G. Murneek and R. O. Whyte (editors), Vernalization and Photoperiodism. Waltham, Mass.: Chronica Botanica Co. 1948.Google Scholar
  306. Furr, J. R., W. C. Cooper and P. C. Reece: An investigation of flower formation in adult and juvenile citrus trees. Amer. J. Bot. 34, 1–8 (1947).CrossRefGoogle Scholar
  307. Galinat, W. C., and A. W. Naylor: Relation of photoperiod to oinflrescence proliferation in Zea mays L. Amer. J. Bot. 38, 38–47 (1951).CrossRefGoogle Scholar
  308. Galston, A. W.: Effects of 2,3,5-triiodobenzoic acid on growth and flowering in soybeans. Amer. J. Bot. 34, 356–360 (1947).CrossRefGoogle Scholar
  309. Galston, A. W.: Transmission of the floral stimulus in soybean. Bot. Gaz. 110, 495–501 (1949).CrossRefGoogle Scholar
  310. Garner, W. W.: Recent work on photoperiodism. Bot. Rev. 3, 259–275 (1937).CrossRefGoogle Scholar
  311. Garner, W. W., and H. A. Allard: Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J. agric. Res. 18, 553–606 (1920).Google Scholar
  312. Garner, W. W., and H. A. Allard: Further studies in photoperiodism, the response of the plant to relative length of day and night. J. agric. Res. 23, 871–920 (1932).Google Scholar
  313. Garner, W. W., and H. A. Allard: Localization of the response in plants to relative length of day and night. J. agric. Res. 31, 555–566 (1925).Google Scholar
  314. Garner, W. W., and H. A. Allard: Photoperiodic response of soybeans in relation to temperature and other environmental factors. J. agric. Res. 41, 719–735 (1930).Google Scholar
  315. Garner, W. W., and H. A. Allard: Effect of abnormally long and short alternations of light and darkness on growth and development of plants. J. agric. Res. 42, 629–651 (1931a).Google Scholar
  316. Garner, W. W., and H. A. Allard: Duration of the flowerless condition in response to unfavorable lengths of day. J. agric. Res. 43, 439–443 (1931b).Google Scholar
  317. Garner, W. W., C.W. Bacon and H.A. Allard: Photoperiodism in relation to hydrogen-ion concentration of the cell sap and the carbohydrate content of the plant. J. agric. Res. 27, 119–156 (1924).Google Scholar
  318. Gassner, G.: Beiträge zur physiologischen Charakteristik sommer- und winterannueller Gewächse, insbesondere der Getreidepflanzen. Z. Bot. 10, 417–480 (1918).Google Scholar
  319. Gentcheff, G., and A. Gustafsson: The cultivation of plant species from seed to flower and flower to seed in different agar solutions. Hereditas (Lund) 25, 250–255 (1940).Google Scholar
  320. Gerhard, E.: Über die Entwicklung der Pflanzen unter dem Einfluß der Tageslänge und der Temperatur im Jugendstadium. J. Landw. 87, 161–203 (1940).Google Scholar
  321. Gilbert, B. E.: Interrelation of relative day length and temeratures. Bot. Gaz. 81, 1–23 (1926).CrossRefGoogle Scholar
  322. Goodwin, R. H.: The inheritance of flowering time in a short-day species, Solidago sempervirens L. Genetics 29, 503–519 (1944).PubMedGoogle Scholar
  323. Gordon, S.: Physiology of hormone action, pp. 253–281 (see pp. 265–266) in: Growth and Differentiation in Plants, edit, by W. E. Loomis. Ames, Iowa: Iowa State College Press 1953. 458 pp.Google Scholar
  324. Gott, M. B., F. G. Gregory and O. N. Purvis: Studies in the vernalization of cereals. XIII. Photoperiodic control of stages in flowering between initiation and ear formation in vernalized and unvernalized Petkus winter rye. Ann. Bot., N.S. 19, 87–126 (1955).Google Scholar
  325. Green, M., and H. J. Fuller: Indole-3-acetic acid and flowering. Science 108, 415–416 (1948).CrossRefPubMedGoogle Scholar
  326. Gregory, F. G.: The effect of length of day on the flowering of plants. Sci. Hort. (Wye, Kent) 4, 143–154 (1936).Google Scholar
  327. Gregory, F. G.: The control of flowering in plants. Symposia Soc. exp. Biol. 2, 75–103 (1948).Google Scholar
  328. Gregory, F. G., I. Spear and K. V. Thimann: The interrelation between CO2 metabolism and photoperiodism in Kalanchoë. Plant Physiol. 29, 220–229 (1954).CrossRefPubMedGoogle Scholar
  329. Greulach, V. A.: Photoperiodic after-effects in six Composites. Bot. Gaz. 103, 698–709 (1942).CrossRefGoogle Scholar
  330. Gustafson, F. G.: Influence of length of day on the dormancy of tree seedlings. Plant Physiol. 13, 655–658 (1938).CrossRefPubMedGoogle Scholar
  331. Guthrie, J. D.: Effect of environmental conditions on chloroplast pigments. Contrib. Boyce Thompson Inst. 2, 220–251 (1929).Google Scholar
  332. Guttenberg, H. v., u. L. Kröpelin: Über den Einfluß des Heteroauxins auf das Laminargelenk von Phaseolus coccineus. Planta (Berl.) 35, 257–280 (1947).CrossRefGoogle Scholar
  333. Hamner, K. C.: Interrelation of light and darkness in photoperiodic induction. Bot. Gaz. 101, 658–687 (1940).CrossRefGoogle Scholar
  334. Hamner, K. C.: Photoperiodism in plants. Ann Rev. Biochem. 13, 575–590 (1944).CrossRefGoogle Scholar
  335. Hamner, K. C., and J. Bonner: Photoperiodism in relation to hormones as factors in floral initiation. Bot. Gaz. 100, 388–431 (1938).CrossRefGoogle Scholar
  336. Hamner, K. C., and E.M. Long: Localization of photoperiodic perception in Helianthus tuberosus. Bot. Gaz. 101, 81–90 (1939).CrossRefGoogle Scholar
  337. Hamner, K. C., and K. K. Nanda: A relationship between applications of indole-acetic acid and high-light-intensity light reaction of photoperiodism. Bot. Gaz. 118, 13–18 (1956).CrossRefGoogle Scholar
  338. Hamner, K. C., and A. W. Naylor: Photoperiodic responses of dill. Bot. Gaz. 100, 853–861 (1939).CrossRefGoogle Scholar
  339. Harada, H., and J. P. Nitsch: Flower induction in Japanese chrysanthemums with gibberellic acid. Science 129, 777–778 (1959).CrossRefPubMedGoogle Scholar
  340. Harder, R.: Notiz über die Abhängigkeit der Ausbildung der Blütenstände von der Größe der photoperiodisch behandelten Blattfläche bei Kalanchoë blossfeldiana. Flora (Jena) 38, 1–10 (1944).Google Scholar
  341. Harder, R.: Vegetative and reproductive development of Kalanchoë blossfeldiana as influenced by photoperiodism. Symposia Soc. exp. Biol. 2, 117–138 (1948).Google Scholar
  342. Harder, R., u. O. Bode: Über die Wirkung von Zwischenbelichtungen während der Dunkelperiode auf das Blühen, die Verlaubung und die Blattsukkulenz bei der Kurztagspflanze Kalanchoë blossfeldiana. Planta (Berl.) 33, 469–504 (1943).CrossRefGoogle Scholar
  343. Harder, R., O. Bode u. H. v. Witsch: Über Wechselbeziehungen zwischen Blütenbildung, Brakteenverlaubung und Sukkulenz der Laubblätter bei Kalanchoë blossfeldiana. Flora (Jena) 36, 85–100 (1942).Google Scholar
  344. Harder, R., O. Bode u. H. v. Witsch: Photoperiodische Untersuchungen in kohlensäurefreier Atmosphäre bei der Kurztagspflanze Kalanchoë blossfeldiana. Jb. wiss. Bot. 91, 381–394 (1944).Google Scholar
  345. Harder, R., u. R. Bünsow: Einfluß des Gibberellins auf die Blütenbildung bei Kalanchoë blossfeldiana. Naturwiss. 43, 544 (1956).CrossRefGoogle Scholar
  346. Harder, R., u. R. Bünsow: Zusammenwirken von Gibberellin mit photoperiodisch bedingten blühfördernden und blühhemmenden Vorgängen bei Kalanchoë blossfeldiana. Naturwiss. 44, 454 (1957).CrossRefGoogle Scholar
  347. Harder, R., u. R. Bünsow: Über die Wirkung von Gibberellin auf Entwicklung und Blütenbildung der Kurztagpflanze Kalanchoë blossfeldiana. Planta (Berl.) 51, 201–222 (1958).CrossRefGoogle Scholar
  348. Harder, R., u. E. Gall: Über die Trennung der Blühhormon- und Metaplasinwirkung bei Kalanchoë blossfeldiana durch Narkose. Nachr. Akad. Wiss. Göttingen, phys.-math. Kl. 54–59 (1945).Google Scholar
  349. Harder, R., u. G. Gümmer: Über die untere kritische Tageslänge bei der Kurztagspflanze Kalanchoë blossfeldiana. Planta (Berl.) 35, 88–99 (1947).CrossRefGoogle Scholar
  350. Harder, R., u. G. Gümmer: Über die Blütenbildung von Kalanchoë blossfeldiana in verschiedenen Licht-Dunkelrhythmen. Planta (Berl.) 37, 12–47 (1949).CrossRefGoogle Scholar
  351. Harder, R., u. Helene van Senden: Antagonistische Wirkung von Wuchsstoff und „Blühhormon“. Naturwiss. 36, 348 (1949).CrossRefGoogle Scholar
  352. Harder, R., u. B. Springorum: Beobachtungen über Metaplasin- und Blühhormonwirkungen bei Rudbeckia. Biol. Zbl. 66, 145–165 (1947).Google Scholar
  353. Harder, R., u. H. v. Witsch: Wirkung von Photoperiodismus und Yarowisation auf die Blütenbildung von Kalanchoë. Gartenbauwiss. 15, 226–246 (1940).Google Scholar
  354. Harder, R., u. H. v. Witsch: Über die Bedeutung der Kohlensäure und der photoperiodischen Belichtung für die Blütenbildung bei Kalanchoë blossfeldiana. Naturwiss. 29, 770–771 (1941).CrossRefGoogle Scholar
  355. Harder, R., H. v. Witsch u. O. Bode: Über Erzeugung einseitig und allseitig verlaubter Infloreszenzen durch photoperiodische Behandlung von Laubblättern (Untersuchungen an Kalanchoë blossfeldiana). Jb. wiss. Bot. 90, 546–591 (1942).Google Scholar
  356. Harrington, J. F., L. Rappaport and K. J. Hood: Influence of gibberellins on stem elongation and flowering of endive. Science 125, 601–602 (1957).CrossRefGoogle Scholar
  357. Hartmann, H. T.: Some effects of temperature and photoperiod on flower formation and runner production in the strawberry. Plant Physiol. 22, 407–420 (1947).CrossRefPubMedGoogle Scholar
  358. Haupt, W.: Untersuchungen über den Determinationsvorgang der Blütenbildung bei Pisum sativum. Z. Bot. 40, 1–32 (1952).Google Scholar
  359. Heinze, P.H., M.W. Parker and H. A. Borthwick: Floral initiation in Biloxi soybean as influenced by grafting. Bot. Gaz. 103, 517–531 (1942).CrossRefGoogle Scholar
  360. Hendricks, S. B.: Control of growth and reproduction by light and darkness. Amer. Scientist 44, 229–247 (1956).Google Scholar
  361. Hendricks, S. B., H. A. Borthwick and R. J. Downs: Pigment conversion in the formative responses of plants to radiation. Proc. nat. Acad. Sci. (Wash.) 42, 19–26 (1956).CrossRefGoogle Scholar
  362. Henfrey, A.: The vegetation of Europe, its conditions and causes, pp.37–39. London: J. van Voorot 1852. 387 pp.Google Scholar
  363. Herrmann, S.: Pfropfversuche an Holzpflanzen. Forstarch. 22, 167–169 (1951).Google Scholar
  364. Heslop-Harrison, J.: The experimental modification of sex expression in flowering plants. Biol. Rev. 32, 38–90 (1957).CrossRefGoogle Scholar
  365. Heslop-Harrison, J.: Photoperiod and fertility in Rottboellia exaltata L. f. Ann. Bot. 23, 345–349 (1959).Google Scholar
  366. Hillman, W. S.: Photoperiodic control of flowering in Lemna perpusilla. Nature (Lond.) 181, 1275 (1958).CrossRefGoogle Scholar
  367. Holdsworth, M.: The concept of minimum leaf number. J. exp. Bot. 7, 395–409 (1956).CrossRefGoogle Scholar
  368. Holdsworth, M., and O. V. S. Heath: Studies in the physiology of the onion plant. IV. The influence of day-length and temperature on the flowering of the onion plant. J. exp. Bot. 1, 353–375 (1950).CrossRefGoogle Scholar
  369. Holdsworth, M., and P. S. Nutman: Flowering response in a strain of Orobanche minor. Nature (Lond.) 160, 223 (1947).CrossRefGoogle Scholar
  370. Howell, M. J., and S. H. Wittwer: Chemical induction of flowering in the sweetpotato. Science 120, 717 (1954).CrossRefPubMedGoogle Scholar
  371. Hussey, G., and F. G. Gregory: The effect of auxin on the flowering behavior of Wintex barley and Petkus rye. Plant Physiol. 29, 292–296 (1954).CrossRefPubMedGoogle Scholar
  372. Ingen-Housz, J.: Experiments upon Vegetables, Discovering their Great Power of Purifying the Common Air in Sunshine and Injuring it in the Shade and at Night. London: Elmsly & Payne 1779. 302 pp.Google Scholar
  373. Isikawa, S.: Light sensitivity against germination. I. “Photoperiodism“ of seeds. Bot. Mag. (Tokyo) 67, 51–56 (1954).Google Scholar
  374. Jennings, P. R., and R. K. Zuck: The cotyledon in relation to photoperiodism in cocklebur. Bot. Gaz. 116, 199–200 (1955).CrossRefGoogle Scholar
  375. Jester, J. R., and P. J. Kramer: The effect of length of day on the height growth of certain forest tree seedlings. J. Forestry 37, 796–803 (1939).Google Scholar
  376. Johnston, E. S.: Phototropic sensitivity in relation to wavelength. Smithsonian Misc. Coll. 92, 1–17 (1934).Google Scholar
  377. Jones, H.A., and H. A. Borthwick: Influence of photo-period and other factors on the formation of flower primordia in the potato. Amer. Potato J. 15, 331–336 (1938).CrossRefGoogle Scholar
  378. Jones, K. L.: Studies on Ambrosia. IV. Effects of short photo-period and temperature on sex expression. Amer. J. Bot. 34, 371–377 (1947).CrossRefGoogle Scholar
  379. Kandeler, R.: Über die Blütenbildung bei Lemna gibba L. II. Das Wirkungsspektrum von blühförderndem Schwachlicht. Z. Bot. 44, 143–174 (1956).Google Scholar
  380. Katunskij, V.M.: Dependency of photoperiodic reactions of plants on the spectral composition of the light. C. R. (Doklady) Acad. Sci. URSS. 15, 509–512 (1937).Google Scholar
  381. Kazaryan, V. O., and E. S. Avundzhyan: The influence of photoperiodic regime on physiological processes in roots of annual plants. Dokl. Akad. Nauk, Armyan. SSR. 20, 143–146 (1955). Chem. Abstr. 50, 10203d (1956).Google Scholar
  382. Kehr, A. E., Y. C. Ting and J.C. Miller: Induction of flowering in the Jersey type sweet potato. Proc. Amer. Soc. hört. Sci. 62, 437–440 (1953).Google Scholar
  383. Khlebnikova, N. A.: Growth and development of white poppy on varying daylength. C.R. (Doklady) Acad. Sci. URSS. 32, 503–504 (1941).Google Scholar
  384. Khudairi, A. K., and K. C. Hamner: The relative sensitivity of Xanthium leaves of different ages to photoperiodic induction. Plant Physiol. 29, 251–257 (1954).CrossRefPubMedGoogle Scholar
  385. Killam, A., and J. Myers: A special effect of light on the growth of Chlorella vulgaris. Amer. J. Bot. 43, 569–572 (1956).CrossRefGoogle Scholar
  386. Kjellmann, F. R.: Aus dem Leben der Polarpflanzen, S. 443–521. In Adolf Erik Frhr. v. Nordenskiöld, Studien und Forschungen. Veranlaßt durch meine Reisen im hohen Norden. Leipzig 1885. 521 pp.Google Scholar
  387. Klebs, G.: Die Bedingungen der Fortpflanzung bei einigen Algen und Pilzen. Jena 1896. 543 pp.CrossRefGoogle Scholar
  388. Klebs, G.: Über das Verhältnis der Außenwelt zur Entwicklung der Pflanze. S.-B. Akad. Wiss. Heidelberg B 5, 1–47 (1913).Google Scholar
  389. Klebs, G.: Über das Treiben der einheimischen Bäume, speziell der Buche. Abh. Heidelberg. Akad. Wiss., math.-nat. Kl. 1914. 116 pp.Google Scholar
  390. Klebs, G.: Über die Blütenbildung von Sempervivum. Flora (Jena) 111/112, 128–151 (1918).Google Scholar
  391. Kleshnin, A. F.: On the rôle of spectral composition of light in photoperiodic reaction. C. R. (Doklady) Acad. Sci. URSS. 40, 208–211 (1943).Google Scholar
  392. Knott, J. E.: Further localization of the response in plant tissue to relative length of day and night. Proc. Amer. Soc. hort. Sci. 23, 67–70 (1926).Google Scholar
  393. Knott, J. E.: Effect of localized photoperiod on spinach. Proc. Amer. Soc. hort. Sci. 31, (Suppl.). 152–154 (1934).Google Scholar
  394. Knott, J. E.: Effect of nitrate of soda on the response of spinach to length of day. Plant Physiol. 15, 146–148 (1940).CrossRefPubMedGoogle Scholar
  395. Kohl, H.C., and A.M. Kofranek: Gibberellin on flower crops. Calif. Agricult. 11 (5), 9(1957).Google Scholar
  396. Kondo, M., T. Okamura, S. Issihikiu. Y. Kasahara: Untersuchungen über „Photoperiodismus“ der Reispflanzen. Ber. Ohara Inst. landw. Forsch. 5, 243–280 (1932).Google Scholar
  397. Kramer, P. J.: The effect of variation in length of day on the growth and dormancy of trees. Plant Physiol. 11, 127–137 (1936).CrossRefPubMedGoogle Scholar
  398. Kramer, P. J.: Photoperiodic stimulation of growth by artificial light as a cause of winter killing. Plant Physiol. 12, 881–883 (1937).CrossRefPubMedGoogle Scholar
  399. Kraus, E. J.: (Personal communication verified and referred to by W.E. Galinat and A.W. Naylor.) Amer. J. Bot. 38, 38–47 (1951).CrossRefGoogle Scholar
  400. Kraus, E. J., and H.R. Kraybill: Vegetation and reproduction with special reference to tomato. Ore. Agr. Exp. Stat. Bull. No 149 (1918).Google Scholar
  401. Krekule, L.N., and A. Martinovska: The effect of gibberellic acid on the development of Triticum and Panicum. [In Russian.] Bot. Zh. 43, 953–958 (1958).Google Scholar
  402. Kucera, C.L.: Flowering variation in geographic selection of Eupatorium rogosum. Bull. Torrey bot. Club 85, 40–48 (1958).CrossRefGoogle Scholar
  403. Kuijper, J., and L.K. Wiersum: Occurrence and transport of a substance causing flowering in the soybean. Proc. kon. ned. Akad. Wet. C 39, 1114–1122 (1936).Google Scholar
  404. Kunitake, G. M., P. Saltman and A. Lang: The products of CO2 dark fixation in leaves of long- and short-day treated Kalanchoë blossfeldiana. Plant Physiol. 32, 201–203 (1957).CrossRefPubMedGoogle Scholar
  405. Laibach, F.: Kreuzungen zwischen Coleus-Arten vom Lang- und Kurztagtyp. Field Information Agency Technical (FIAT) Report (U.S.) No 1135, Office of Military Government for Germany (US) 1947.Google Scholar
  406. Laibach, F.: Über sommer- und winterannuelle Rassen von Arabidopsis thaliana (L.) Heynh. Ein Beitrag zur Ätiologie der Blütenbildung. Beitr. Biol. Pflanzen 28, 173–210 (1950).Google Scholar
  407. Laibach, F., u. F. I. Kribben: Der Einfluß von Wuchsstoff auf die Blütenbildung der Gurke. Naturwiss. 37, 114–115 (1950).CrossRefGoogle Scholar
  408. Lammerts, W. E.: Effect of photoperiod and temperature on growth of embryo-cultured peach seedlings. Amer. J. Bot. 30, 707–711 (1943).CrossRefGoogle Scholar
  409. Lang, A.: Über die Bedeutung von Licht und Dunkelheit in der photoperiodischen Reaktion von Langtagpflanzen. Biol. Zbl. 61, 427–432 (1941).Google Scholar
  410. Lang, A.: Beiträge zur Genetik des Photoperiodismus. I. Faktorenanalyse des Kurztagcharakters von Nicotiana tabacum “Maryland Mammoth“. Z. indukt. Abstamm.- u. Vererb.-Lehre 80, 210–219 (1942). Nachdruck in: Vernalization and Photoperiodism. A Symposium, edit, by A. E. Mtjrneek and R. O. Whyte, pp. 175–183. Waltham, Mass.: Chronica Botanica Co. 1948. 196 pp.Google Scholar
  411. Lang, A.: Beiträge zur Genetik des Photoperiodismus. II. Photoperiodismus und Autopolyploidie. Z. Naturforsch. 2b, 36–44 (1947).Google Scholar
  412. Lang, A.: Entwicklungsphysiologie. II. Die Wirkung der Außenfaktoren. Fortschr. Bot. 12, 398–421 (1949).Google Scholar
  413. Lang, A.: Physiology of flowering. Ann. Rev. Plant Physiol. 3, 265–306 (1952).CrossRefGoogle Scholar
  414. Lang, A.: Stem elongation in rosette plant, induced by gibberellic acid. Naturwiss. 43, 257–258 (1956 a).CrossRefGoogle Scholar
  415. Lang, A.: Induction of flower formation in biennial Hyoscyamus by treatment with gibberellin. Naturwiss. 43, 284–285 (1956b).CrossRefGoogle Scholar
  416. Lang, A.: Gibberellin and flower formation. Naturwiss. 43, 544 (1956 c).CrossRefGoogle Scholar
  417. Lang, A.: The effect of gibberellin upon flower formation. Proc. nat. Acad. Sci. (Wash.) 43, 709–717 (1957).CrossRefGoogle Scholar
  418. Lang, A., u. G. Melchers: Über den hemmenden Einfluß der Blätter in der photoperiodischen Reaktion der Pflanzen. Naturwiss. 29, 82–83 (1941).CrossRefGoogle Scholar
  419. Lang, A., u. G. Melchers: Die photoperiodische Reaktion von Hyoscyamus niger. Planta (Berl.) 33, 653–702 (1943).CrossRefGoogle Scholar
  420. Lang, A., u. G. Melchers: Vernalisation und Devernali-sation bei einer zweijährigen Pflanze. Z. Naturforsch. 2b, 444–449 (1947).Google Scholar
  421. Lang, A., u. G. Melchers: Auslösung von Blütenbildung bei Langtagpflanzen unter Kurztagbedingungen durch Aufpfropfung von Kurztagpflanzen. Z. Naturforsch. 3b, 108–111 (1948).Google Scholar
  422. Lang, A., J. A. Sandoval and A. Bedri: Induction of bolting and flowering in Hyoscyamus and Samolus by a gibberellin-like material from a seed plant. Proc. nat. Acad. Sci. (Wash.) 43, 960–964 (1957).CrossRefGoogle Scholar
  423. Langridge, J.: Effect of day-length and gibberellic acid on the flowering of Arabidopsis. Nature (Lond.) 180, 36–37 (1957).CrossRefGoogle Scholar
  424. Langston, R., and A. C. Leopold: Photoperiodic responses of peppermint. Proc. Amer. Soc. hort. Sci. 63, 347–352 (1954).Google Scholar
  425. Larsen, E. C.: Photoperiodic responses of geographical strains of Andropogon scoparius. Bot. Gaz. 109, 132–149 (1947).CrossRefGoogle Scholar
  426. Leopold, A. C.: Flower initiation in total darkness. Plant Physiol. 24, 530–533 (1949a).CrossRefPubMedGoogle Scholar
  427. Leopold, A. C.: The control of tillering in grasses by auxin. Amer. J. Bot. 36, 437–440 (1949b).CrossRefGoogle Scholar
  428. Leopold, A. C.: Photoperiodism in plants. Quart. Rev. Biol. 26, 247–263 (1951).CrossRefPubMedGoogle Scholar
  429. Leopold, A. C., and F. S. Guernsey: Flower initiation in Alaksa pea. I. Evidence as to the role of auxin. Amer. J. Bot. 40, 46–50 (1953 a).CrossRefGoogle Scholar
  430. Leopold, A. C., and F. S. Guernsey: Modification of floral initiation with auxins and temperatures. Amer. J. Bot. 40, 603–607 (1953b).CrossRefGoogle Scholar
  431. Leopold, A.C., and K.V. Thimann: The effect of auxin on flower initiation. Amer. J. Bot. 36, 342–347 (1949).CrossRefGoogle Scholar
  432. Lincoln, R. G., and K. C. Hamner: Effect of gibberellic acid (GA) on the flowering of Xanthium, a short day plant. Plant Physiol. 33, 101–104 (1958b).CrossRefPubMedGoogle Scholar
  433. Lincoln, R. G., D. L. Mayfield and A. Cunningham: Preparation of a floral initiating extract from Xanthium. Science 133, 756 (1961).CrossRefPubMedGoogle Scholar
  434. Lincoln, R. G., K. A. Raven and K. C. Hamner: Certain factors influencing expression of the flowering stimulus in Xanthium. I. Translocation and inhibition of the flowering stimulus. Bot. Gaz. 117, 193–206 (1956).CrossRefGoogle Scholar
  435. Lincoln, R. G., K. A. Raven and K. C. Hamner: Certain factors influencing expression of flowering stimulus in Xanthium. II. Relative contribution of buds and leaves to effectiveness of inductive treatment. Bot. Gaz. 119, 179–185 (1958a).CrossRefGoogle Scholar
  436. Lindstrom, R. S., S. H. Wittwer and M. J. Bukovac: Gibberellin and higher plants. IV. Flowering responses of some flower crops. Quart. Bull. Mich. Agric. Exp. Stat. 39, 673–681 (1957).Google Scholar
  437. Liverman, J. L.: The physiology of flowering. Ann. Rev. Plant Physiol. 6, 177–210 (1955).CrossRefGoogle Scholar
  438. Liverman, J. L., and J. Bonner: The interaction of auxin and light in the growth response of plants. Proc. nat. Acad. Sci. (Wash.) 39, 905–916 (1953a).CrossRefGoogle Scholar
  439. Liverman, J. L., and J. Bonner: Biochemistry of the photoperiodic response: The high-intensity light reaction. Bot. Gaz. 115, 121–128 (1953b).CrossRefGoogle Scholar
  440. Liverman, J. L., and A. Lang: Induction of flowering in long-day plants by applied indoleacetic acid. Plant Physiol. 31, 147–150 (1956).CrossRefPubMedGoogle Scholar
  441. Lockhart, J. A., and K. C. Hamner: Effect of darkness and indoleacetic acid following exposure to short day on the floral response of Xanthium, a short-day plant. Bot. Gaz. 116, 133–142 (1954a).CrossRefGoogle Scholar
  442. Lockhart, J. A., and K. C. Hamner: Partial reactions in the formation of the floral stimulus in Xanthium. Plant Physiol. 29, 509–513 (1954b).CrossRefPubMedGoogle Scholar
  443. Loehwing, W. F.: Locus and physiology of photoperiodic perception in plants. Proc. Soc. exp. Biol. Med. 37, 631–634 (1938).Google Scholar
  444. Love, D., and P. Dansereatj: Biosystematic studies on Xanthium: taxonomic appraisal and ecological status. Canad. J. Bot. 37, 173–208 (1959).CrossRefGoogle Scholar
  445. Lona, F.: Sui fenomeni di induzione, post-effetto e localizzazione fotoperiodica. L’induzione antogena indiretta delle foglie primordali di Xanthium italicum Moretti. Nuovo Giorn. bot. ital. 53, 548–576 (1946).Google Scholar
  446. Lona, F.: “Chimere funzionali” come conseguenza della localizzazione e autonomia del carattere fisiologico delle foglie in rapporto coi processi di sviluppo della pianta. Lavori di Botanica (Pubbl. in occasione del 70 genetliaco del Prof. G. Gola), pp. 277–283. Padova 1947 a.Google Scholar
  447. Lona, F.: Correlazioni di sviluppo e di accrescimento tra parti di una stessa pianta (di tipo longidiurno) tenute in condizioni fotoperiodiche differenti. Lavori di Botanica (Pubbl. in occasione del 70 genetliaco del Prof. G. Gola) pp. 285–311. Padova 1947b.Google Scholar
  448. Lona, F.: L’influenza delle condizioni ambientali durante l’embriogenesi sulle caratteristiche del seme e della pianta che ne deriva. Lavori di Botanica (pubbl. in accosione del 70 genetliaco del Prof. G. Gola) pp. 313–352. Padova 1947c.Google Scholar
  449. Lona, F.: Chenopodium amaranticolor (S.D.) flowers in total darkness, when fed with sugar and when defoliated. Nuovo Giorn Bot., N.S. 56, 2 (1948a).Google Scholar
  450. Lona, F.: La fioritura della brevidiurna Chenopodium amaranticolor Coste et Reyn. Coltivata in soluzione nutritizia con saccarosio, in assenza di stimolo fotoperiodico euflorigeno. Nuovo Giorn. bot. ital. 55, 559–562 (1948b).CrossRefGoogle Scholar
  451. Lona, F.: L’induzione fotoperiodica di foglie staccate. Boll. Soc. ital. Biol. sper. 25, 1–3 (1949).Google Scholar
  452. Lona, F.: Esperienze sulla antoinibizione fotoperiodica e sulla fioritura delle brevidiurne a notte continua. Humus (Milan) 6 (4), 6–10 (1950).Google Scholar
  453. Lona, F.: L’azione dell’acido gibberellico sull’acrescimento caulinare di talune piante erbacea in condizioni esterne controllate. Nuovo Giorn. bot. ital. 63, 61–76 (1956).CrossRefGoogle Scholar
  454. Lona, F., e A. Bocchi: Sviluppo vegetativo e riproduttivo di alcune longidiurne in rapporto all’azione dell’acido gibberellico. Nuovo Giorn. bot. ital., N.S. 68, 469–486 (1956).CrossRefGoogle Scholar
  455. Long, E.M.: Photoperiodic induction as influenced by environmental factors. Bot. Gaz. 101, 168–188 (1939).CrossRefGoogle Scholar
  456. Lubimenko, V. N., et E. D. Buslova: Contribution à la théorie du photopério-disme. C. R. (Doklady) Acad. Sci. URSS. 14, 149–163 (1937).Google Scholar
  457. Lubimenko, V.N., et D. A. Szeglova: L’adaptation photopériodique des plantes. Rev. gén. Bot. 40, 513–536, 577–590, 675–689, 747–764 (1928).Google Scholar
  458. Madsen, G. C.: Influence of photoperiod on microsporogenesis in Cosmos sulphureus Cav. var. Klondike. Bot. Gaz. 109, 120–132 (1947).CrossRefGoogle Scholar
  459. Magruder, R., and H. A. Allard: Bulb formation in some American and European varieties of onions as affected by length of day. J. agric. Res. 54, 719–752 (1937).Google Scholar
  460. Mahlstede, J.P.: Report of field trial committee. Proc. Plant Propagators Soc. 6, 130–134 (1956).Google Scholar
  461. Mann, L. K.: Some effects of environmental factors on floral initiation in Xanthium. Bot. Gaz. 102, 339–356 (1940).CrossRefGoogle Scholar
  462. Mann, L. K.: Effects of photo-period on sex expression in Ambrosia trifida. Bot. Gaz. 103, 780–787 (1942).CrossRefGoogle Scholar
  463. Matzke, E. B.: The effect of street lights in delaying leaf-fall in certain trees. Amer. J. Bot. 23, 446–452 (1936).CrossRefGoogle Scholar
  464. McIlrath, W. J., and L. Bogorad: Photoperiodic floral induction of Xanthium and germination of lettuce seeds implanted in the petioles. Bot. Gaz. 119, 186–191 (1958).CrossRefGoogle Scholar
  465. McKinney, H.H., and W. J. Sando: Earliness and seasonal growth habit in wheat. J. Hered. 24, 169–179 (1933).Google Scholar
  466. Meijer, G.: The influence of light quality on the flowering response of Salvia occidentalis. Acta bot. neerl. 6, 395–406 (1957).Google Scholar
  467. Meijer, G., and R. van der Veen: Wavelength dependence on photoperiodic responses. Acta bot. neerl. 6, 429–433 (1957).Google Scholar
  468. Melchers, G.: Versuche zur Genetik und Entwicklungsphysiologie der Blühreife. Biol. Zbl. 56, 567–570 (1936).Google Scholar
  469. Melchers, G.: Die Wirkung von Genen, tiefen Temperaturen und blühenden Pfropf partnern auf die Blühreife von Hyoscyamus. Biol. Zbl. 57, 568–614 (1937).Google Scholar
  470. Melchers, G.: La fisiologia della fioritura: un capitolo della fisiologia generale delle sviluppo. Ist. Lomb. Sci. e Lett., Cl. Sci. 83, 1–28 (1950).Google Scholar
  471. Melchers, G.: Die Beteiligung der endonomen Tagesrhythmik am Zustandekommen der photoperiodischen Reaktion der Kurztagpflanze Kalanchoë blossfeldiana. Z. Naturforsch. 11b, 544–548 (1956).Google Scholar
  472. Melchers, G., u. H. Claes: Auslösung von Blütenbildung bei der Langtagpflanze Hyoscyamus niger in Kurztagbedingungen durch Hemmung der Atmung in den Dunkelphasen. Naturwiss. 31, H. 21/22 (1943).CrossRefGoogle Scholar
  473. Melchers, G., u. A. Lang: Weitere Untersuchungen zur Frage der Blühhormone. Biol. Zbl. 61, 16–39 (1941).Google Scholar
  474. Melchers, G., u. A. Lang: Auslösung von Blütenbildung bei H. niger durch Infiltration mit Zuckerlösung. Naturwiss. 30, 589–590 (1942).CrossRefGoogle Scholar
  475. Melchers, G., u. A. Lang: Die Physiologie der Blütenbildung (Übersichtsbericht). Biol. Zbl. 67, 105–174 (1948).Google Scholar
  476. Moshkov, B. S.: To the question of photoperiodism of certain woody species. Bull. Appl. Bot., Genet, and Plant Breeding 23(2), 479–510 (1929/30).Google Scholar
  477. Moshkov, B. S.: Photoperiodicity of trees and its practical importance. [In Russian.] Bull. Appl. Bot., Genet, and Plant Breeding A, Soc. Pl. Ind. 2, 08–123 (1932). [Biol. Abstr. 8, 1680 (1933).]Google Scholar
  478. Moshkov, B. S.: Rôle of leaves in photoperiodic reaction of plants. Bull. Appl. Bot., Genet, and Plant Breeding A 17, 25–30 (1936a).Google Scholar
  479. Moshkov, B. S.: Photoperiodic response of leaves and its utilization in grafting. Bull. Appl. Bot., Genet. and Plant Breeding or Trudy Priklad. Bot. Genetike i Selektsii A 19, 107–126 (1936b).Google Scholar
  480. Moshkov, B. S.: Photoperiodism and a hypothesis as to hormones of flowering. C. R. (Doklady) Acad. Sci. URSS. 15, 211–214 (1937 a).Google Scholar
  481. Moshkov, B. S.: Blüte von Kurztagspflanzen in kontinuierlicher Beleuchtung als Resultat von Pfropfungen. Trudy Priklad. Bot. Genetike i Selekstii A 21, 145–156 (1937b).Google Scholar
  482. Moshkov, B. S.: Minimum intervals of darkness and light to induce flowering in short day plants. C. R. (Doklady) Acad. Sci. URSS. 22, 456–459 (1939a).Google Scholar
  483. Moshkov, B. S.: Photoperiodic responses of plant as determined by their ontogenesis. C. R. (Doklady) Acad. Sci. URSS. 22, 460–463 (1939b).Google Scholar
  484. Moshkov, B. S.: Transfer of photoperiodic reaction from leaves to growing plants. C. R. (Doklady) Acad. Sci. URSS. 24, 489–491 (1939c).Google Scholar
  485. Moshkov, B. S.: Elimination of leaves in grafting. C. R. (Doklady) Acad. Sci. URSS. 81, 161–162 (1941).Google Scholar
  486. Moshkov, B. S., and I. E. Kocherzhenko: Rooting of woody cuttings as dependent upon photoperiodic condition. C. R. (Doklady) Acad. Sci. URSS. 24, 392–395 (1939).Google Scholar
  487. Murneek, A. E.: Biochemical studies of photoperiodism in plants. Mo. Agr. Exp. Stat. Res. Bull. No 268 (1937).Google Scholar
  488. Murneek, A. E.: A separation of certain types of response of plants to the photoperiod. Proc. Amer. Soc. hort. Sci. 34, 507–509 (1937).Google Scholar
  489. Murneek, A. E.: Length of day and temperature effects in Rudbeckia. Bot. Gaz. 102, 269–279 (1940).CrossRefGoogle Scholar
  490. Murneek, A. E., R. O. Whyte and others: Vernalization and Photoperiodism: a Symposium. Waltham, Mass.: Chronica Botanica Co. 1948. 196 pp.Google Scholar
  491. Nakata, S.: Floral initiation and fruit-set in lychee, with special reference to the effect of sodium naphthaleneacetate. Bot. Gaz. 117, 126–134 (1955).CrossRefGoogle Scholar
  492. Nanda, K. K., and K. C. Hamner: Studies on the nature of the endogenous rhythm affecting photoperiodic response of Biloxi soybean. Bot. Gaz. 120, 14–24 (1958).CrossRefGoogle Scholar
  493. Naylor, A. W.: Unpublished 1940.Google Scholar
  494. Naylor, A. W.: Effects of some environmental factors on photoperiodic induction of beet and dill. Bot. Gaz. 102, 557–575 (1941a).CrossRefGoogle Scholar
  495. Naylor, A. W.: Effect of nutrition and age upon rate of development of terminal staminate inflorescences of Xamthiun pennsylvanicum. Bot. Gaz. 103, 342–353 (1941b).CrossRefGoogle Scholar
  496. Naylor, A. W.: Some effects of growth substances on floral initiation and development in Xanthium. Amer. J. Bot. 37, 681 (1950a).Google Scholar
  497. Naylor, A. W.: Observations on the effects of maleic hydrazide on flowering of tobacco, maize, and cocklebur. Proc. nat. Acad. Sci. (Wash.) 36, 230–232 (1950b).CrossRefGoogle Scholar
  498. Naylor, A. W.: Reactions of plants to photoperiod, pp. 144–178. In: Growth and Development in Plants, edit, by W. Loomis. Ames, Iowa: Univ. of Iowa Press 1953. 458 pp.Google Scholar
  499. Naylor, A. W., and A. Mark: Effects of tryptazan, an antimetabolite of tryptophan, on growth and flowering response of Xanthium. Plant Physiol. (Suppl.) 31, XXXV (1956).Google Scholar
  500. Naylor, Frances L.: Effect of length of induction period on floral development of Xanthium pennsylvanicum. Bot. Gaz. 103, 146–154 (1941).CrossRefGoogle Scholar
  501. Neidle, Edith K.: Nitrogen nutrition in relation to photoperiodism in Xanthium pennsylvanicum. Bot. Gaz. 100, 607–618 (1939).CrossRefGoogle Scholar
  502. Nielsen, C. G.: Effect of photoperiod on microsporogenesis in Biloxi soybean. Bot. Gaz. 104, 99–106 (1942).CrossRefGoogle Scholar
  503. Nitsch, J. P.: Light and plant propagation. Proc. Plant Propagators Soc. 6, 122–130 (1956).Google Scholar
  504. Nitsch, J. P.: Growth responses of woody plants to photoperiodic stimuli. Proc. Amer. Soc. hort. Sci. 70, 512–525 (1957).Google Scholar
  505. Nuttonson, M. Y.: Phenological data as a tool in the study of photoperiodic requirements of plants. In A. E. Murneek and R. O. Whyte, Vernalization and Photoperiodism. Waltham, Mass.: Chronica Botanica Co. 1948. 196 pp.Google Scholar
  506. Obsil, K.: Zur Frage der Blühhormone. Planta (Berl.) 29, 468–476 (1939).CrossRefGoogle Scholar
  507. Oden, S.: Plant growth in electric light. Kungl. Landtbr. Akad. Handl. Tidskr. 68, 897–1057 (1929).Google Scholar
  508. Oden, S., G. Köhler and G. Nilsson: Plant cultivation with the aid of electric light. A report on investigations in Sweden. Internat. Ilium. Congr. (Sheffield, England). Proc. 1931, 1298–1326 (1932).Google Scholar
  509. Olmsted, C. E.: Growth and development in range grasses. IV. Photoperiodic responses in twelve geographic strains of side-oats grama. Bot. Gaz. 106, 46–74 (1944).CrossRefGoogle Scholar
  510. Olmsted, C. E.: Growth and development in range grasses. V. Photoperiodic responses of clonal divisions of three latitudinal strains of side-oats grama. Bot. Gaz. 106, 382–401 (1945).CrossRefGoogle Scholar
  511. Olmsted, C. E.: Experiments on photoperiodism, dormancy and leaf age and abscission in sugar maple. Bot. Gaz. 112, 365–393 (1951).CrossRefGoogle Scholar
  512. Overbeek, J. van: Flower formation in the pineapple plant as controlled by 2,4-D and naphthaleneacetic acid. Science 102, 621 (1945).CrossRefGoogle Scholar
  513. Overbeek, J. van: Control of flower formation and fruit size in pineapple. Bot. Gaz. 108, 64–73 (1946).CrossRefGoogle Scholar
  514. Owen, F. V., E. Carsner and M. Stout: Photothermal induction of flowering in sugar beets. J. agric. Res. 61, 101–124 (1940).Google Scholar
  515. Parker, M. W., and H. A. Borthwick: Effect of variation in temperature during photoperiodic induction upon initiation of flower primordia in Biloxi soybean. Bot. Gaz. 101, 145–167 (1939).CrossRefGoogle Scholar
  516. Parker, M. W., and H. A. Borthwick: Floral initiation in Biloxi soybeans as influenced by photosynthetic activity during the induction period. Bot. Gaz. 102, 256–268 (1940).CrossRefGoogle Scholar
  517. Parker, M. W., S. B. Hendricks and H. A. Borthwick: Action spectra for the photoperiodic control of floral initiation of the long day plant Hyoscyamus niger. Bot. Gaz. 111, 242–252 (1950).CrossRefGoogle Scholar
  518. Parker, M. W., S.B. Hendricks, H. A. Borthwick and N. J. Scully: Action spectrum for photoperiodic control of floral initiation of short day plants. Bot. Gaz. 108, 1–25 (1946).CrossRefGoogle Scholar
  519. Parker, M. W., S. B. Hendricks, H. A. Borthwick and F. W. Went: Spectral sensitivities for leaf and stem growth of etiolated pea seedlings and their similarity to action spectra for photoperiodism. Amer. J. Bot. 86, 194–204 (1949).CrossRefGoogle Scholar
  520. Paton, D. M., and H. N. Barber: Physiological genetics of Pisum. I. Grafting experiments between early and late varieties. Austral. J. Biol. Sci. 8, 231–240 (1955).Google Scholar
  521. Pauley, S.S., and T.O. Perry: Ecotypic variation of the photoperiodic response in Populus. J. Arnold Arboretum 35, 167–188 (1954).Google Scholar
  522. Peterson, M. L., and W. E. Loomis: Effects of photoperiod and temperature on growth and flowering of Kentucky blue grass. Plant Physiol. 24, 31–43 (1949).CrossRefPubMedGoogle Scholar
  523. Pfeffer, W.: The Physiology of Plants, Vol. III. Translated by A. J. Ewart. London: Oxford Press 1906. 451 pp.Google Scholar
  524. Phillips, J. E.: Effect of daylength on dormancy in tree seedlings. J. Forestry 89, 55–59 (1951).Google Scholar
  525. Piringer, A. A., and H. A. Borthwick: Photoperiodic responses of coffee. Turrialba 5, 72–77 (1955).Google Scholar
  526. Piringer, A.A., and P. H. Heinze: Effect of light on the formation of a pigment in the tomato fruit cuticle. Plant Physiol. 29, 467–472 (1954).CrossRefPubMedGoogle Scholar
  527. Popp, H. W.: A physiological study of the effect of various ranges of wavelength on the growth of plants. Amer. J. Bot. 13, 706–736 (1926).CrossRefGoogle Scholar
  528. Post, K.: Further responses of miscellaneous plants to temperature. Proc. Amer. Soc. hort. Sci. 34, 627–629 (1937).Google Scholar
  529. Post, K.: Effects of daylength and temperature on growth and flowering of some florist crops. Cornell Univ. Agr. Exp. Stat. Bull. 787. Ithaca, N. Y. 1942. 70 pp.Google Scholar
  530. Post, K.: Accumulation of photoperiodic stimuli in Chrysanthemums. Proc. Amer. Soc. hort. Sci. 55, 475–476 (1950).Google Scholar
  531. Post, K., and H. Kamemoto: Photoperiod and bud formation on Chrysanthemum cuttings. Proc. Amer. Soc. hort. Sci. 55, 473–474 (1950).Google Scholar
  532. Potapenko, A.: The origin of the photoperiodic reaction and its significance in regard to adaptation. C. R. (Doklady) Acad. Sci. URSS. 57, 959–961 (1947). [In Russian.]Google Scholar
  533. Purvis, O. N.: An analysis of the influence of temperature during germination on the subsequent development of certain winter cereals and its relation to the effect of length of day. Ann. Bot. 48, 919–955 (1934).Google Scholar
  534. Purvis, O. N., and F. G. Gregory: Studies in vernalisation of cereals. I. A comparative study of vernalisation of winter rye by low temperature and by short days. Ann. Bot., N.S. 1, 569–592 (1937).Google Scholar
  535. Quinby, J. R., and R. E. Karper: The inheritance of three genes that influence time of floral initiation and maturity date in milo. Amer. Soc. Agron. J. 37, 916–936 (1945).CrossRefGoogle Scholar
  536. Radley, M.: The distribution of substances similar to gibberellic acid in higher plants. Ann. Bot. 22, 297–307 (1958).Google Scholar
  537. Ramaley, F.: A working bibliography of day length and artificial illumination as affecting growth of seed plants. Colorado Univ. Studies 20, 257–263 (1933).Google Scholar
  538. Rane, F. W.: Electroculture with the incandescent lamp. West Virginia Agr. Exp. Stat. Bull. 37, 27 pp. (1894).Google Scholar
  539. Razumov, V. I.: On the localization of the photo-periodical stimulation. Bull. Appl. Bot., Genet. and Plant Breeding 27, 249–282 (1931).Google Scholar
  540. Razumov, V. I.: The significance of the quality of light in photoperiodical response. Lenin Acad. Agr. Sci., USSR., Inst. Plant Indus. Bull. Appl. Bot., Genet, and Plant Breeding, Ser. III, No 3, 250–251 (1933).Google Scholar
  541. Razumov, V. I.: The significance of the quality of light in photoperiodical response. In K. A. Timiriazev: Memorial Volume of Plant Research. Acad. Sci. URSS., Moscow 1941, 283 pp.Google Scholar
  542. Reece, P.C., J. R. Furr and W.C. Cooper: The inhibiting effect of the terminal bud on flower formation in the axillary buds of the Haden mango (Mangifera indica L.). Amer. J. Bot. 33, 209–210 (1946).CrossRefGoogle Scholar
  543. Reed, H. S., and D. T. MacDougal: Growth processes of Corallorhiza. Growth 9, 235–258 (1945).Google Scholar
  544. Resende, F.: “Long-short” day plants. Portug. Acta Biol. A 3, 318–321 (1952).Google Scholar
  545. Resende, F.: Changing of the ♂ flowers into ♀ flowers by the action of weak light (Bryophyllum). Portug. Acta Biol. A 2, 365–366 (1949).Google Scholar
  546. Resende, F., and Maria J. Viana: The role played by the intensity of illumination during the development of the inflorescence of Bryophyllum daigre-montianum (R. Harnet et Perr.) Berg. Portug. Acta Biol. A 2, 211–226 (1948).Google Scholar
  547. Roberts, R. H.: The induction of flowering with a plant extract. In: Plant Growth Substances, edit, by F. Skoog, pp. 347–350. Madison, Wis.: Univ. of Wisconsin Press 1951. 476 pp.Google Scholar
  548. Roberts, R. H.: A naturally occurring antiauxin. Science 117, 456–457 (1953).CrossRefPubMedGoogle Scholar
  549. Roberts, R. H., and B. Esther Struckmeyer: The effects of temperature and other environmental factors upon the photoperiodic responses of some of the higher plants. J. agric. Res. 56, 633–678 (1938).Google Scholar
  550. Roberts, R. H., and B. Esther Struckmeyer: Further studies of the effects of temperature and other environmental factors upon the photoperiodic responses of plants. J. agric. Res. 59, 699–710 (1939a).Google Scholar
  551. Roberts, R. H., and B. Esther Struckmeyer: The point of origin of the blossom-inducing stimulus. Science 90, 16 (1939b).CrossRefPubMedGoogle Scholar
  552. Rogers, J. S.: The inheritance of photoperiodic response and tillering in maize-teosinte hybrids. Genetics 35, 513–540 (1950).PubMedGoogle Scholar
  553. Rupcheva, I. A.: Development of plants under conditions of alternating photoperiodic cycles. C. R. (Doklady) Acad. Sci. URSS. 61, 741–744 (1948).Google Scholar
  554. Sachs, J.: Wirkung des Lichts auf die Blüthenbildung unter Vermittlung der Laubblätter. Bot. Ztg 28, 117–121, 125–131, 133–139 (1865).Google Scholar
  555. Sachs, R. M.: Floral initiation in Cestrum nocturnum. I. A long-short day plant. Plant Physiol. 31, 185–192 (1956).CrossRefPubMedGoogle Scholar
  556. Salisbury, F. B.: The dual role of auxin in flowering. Plant Physiol. 30, 327–344 (1955).CrossRefPubMedGoogle Scholar
  557. Salisbury, F. B.: Growth regulators and flowering. I. Survey methods. Plant Physiol. 32, 600–608 (1957).CrossRefPubMedGoogle Scholar
  558. Salisbury, F. B., and J. Bonner: The reactions of the photoinductive dark period. Plant Physiol. 31, 141–147 (1956).CrossRefPubMedGoogle Scholar
  559. Sarkar, S.: Versuche zur Physiologie der Vernalisation. Biol. Zbl. 77, 1–49 (1958).Google Scholar
  560. Saussure, N. T. de: Recherches chimiques sur la végétation. Paris: Nyon 1804.Google Scholar
  561. Schaffner, J. H.: Sex reversal and the experimental production of neutral tassels in Zea mays. Bot. Gaz. 90, 279–298 (1930).CrossRefGoogle Scholar
  562. Schaffner, J. H.: The fluctuation curve of sex reversal in staminate hemp plants induced by photoperiodicity. Amer. J. Bot. 18, 424–430 (1931).CrossRefGoogle Scholar
  563. Schanz, F.: Wirkungen des Lichts verschiedener Wellenlänge auf die Pflanzen. Ber. dtsch. bot. Ges. 37, 430–442 (1919).Google Scholar
  564. Schappelle, N.: Effect of narrow ranges of wave lengths of radiant energy, and other factors, on the reproductive growth of long-day and short-day plants. Cornell Univ. Agr. Stat. Mem. 185, 1–33 (1936).Google Scholar
  565. Schwabe, W. W.: Photoperiodic cycles of lengths differing from 24 hours in relation to endogenous rhythm. Physiol. Plantarum (Cph.) 8, 263–278 (1955).CrossRefGoogle Scholar
  566. Schwabe, W. W.: Effects of natural and artificial light in arctic latitudes on long- and short-day plants as revealed by growth analysis. Ann. Bot., N. S. 20, 587–622 (1956).Google Scholar
  567. Scully, N.J., and W.E. Domingo: Effect of duration and intensity of light upon flowering in castor bean. Bot. Gaz. 108, 556–570 (1947).CrossRefGoogle Scholar
  568. Scully, N.J., M.W. Parker and H. A. Borthwick: Interaction of nitrogen nutrition and photoperiod as expressed in bulbing and flower stalk development of onion. Bot. Gaz. 107, 52–61 (1945a).CrossRefGoogle Scholar
  569. Scully, N.J., M.W. Parker and H. A. Borthwick: Relationship of photoperiod and nitrogen to initiation of flower primordia in soybean varieties. Bot. Gaz. 107, 218–231 (1945b).CrossRefGoogle Scholar
  570. Sen, B.: Annual report for research on vernalization. Imp. Counc. Agric. Res., New Delhi 1944 (cited by S. M. Sircar, in A. E. Murneek and R. O. Whyte (editors), Vernalization and Photo-periodism. Waltham, Mass.: Chronica Botanica Co. 1948. 196 pp.Google Scholar
  571. Sen, S. P., and A. C. Leopold: Influence of light and darkness upon carbon dioxide fixation. Plant Physiol. 31, 323–329 (1956).CrossRefPubMedGoogle Scholar
  572. Senden, H. van: Untersuchungen über den Einfluß von Hetero-auxin und anderen Faktoren auf die Blütenbildung bei der Kurztagspflanze Kalanchoë blossfeldiana. Biol. Zbl. 70, 537–565 (1951).Google Scholar
  573. Sen Gupta, J. C., and S. K. Payne: Leaf heteromorphism and photoperiods in Sesamum orientale L. Nature (Lond.) 160, 510 (1947).CrossRefGoogle Scholar
  574. Shigeura, G.: Blossom-bud formation and fruit setting in the Litchi. Hawaii Agr. Exp. Stat. Bien. Rept., 1946–1948.Google Scholar
  575. Siegelman, H. W., and S.B. Hendricks: Photocontrol of anthocyanin formation in turnip and red cabbage seedlings. Plant Physiol. 32, 393–398 (1957).CrossRefPubMedGoogle Scholar
  576. Siegelman, H. W., and S.B. Hendricks: Photocontrol of anthocyanin synthesis in apple skin. Plant Physiol. 33, 185–190 (1958).CrossRefPubMedGoogle Scholar
  577. Sircar, S. M.: Vernalization and photoperiodism in the tropics. In A. E. Murneek and R. O. Whyte (editors), Vernalization and Photoperiodism. Waltham, Mass.: Chronica Botanica Co. 1948. 196 pp.Google Scholar
  578. Sironval, C.: Action of day-length upon the formation of adventitious buds in Bryophyllum tubiflorum Harv. Nature (Lond.) 178, 1357–1358 (1956).CrossRefGoogle Scholar
  579. Sironval, C.: Daylength and haematin compounds in plants. Nature (Lond.) 182, 1170–1171 (1958).CrossRefGoogle Scholar
  580. Sivori, E., and F. W. Went: Photoperiodicity of Baeria chrysostoma. Bot. Gaz. 105, 312–329 (1944).CrossRefGoogle Scholar
  581. Skok, J., and N. J. Scully: Nature of the photoperiodic responses of buckwheat. Bot. Gaz. 117, 134–141 (1955).CrossRefGoogle Scholar
  582. Smith, Harriet J., W. J. McIlrath and L. Bogorad: Some effects of iron deficiency on flowering in Xanthium. Bot. Gaz. 118, 174–179 (1957).CrossRefGoogle Scholar
  583. Snyder, W. E.: Effect of light and temperature on floral initiation in cock-lebur and Biloxi soybean. Bot. Gaz. 102, 302–322 (1940).CrossRefGoogle Scholar
  584. Snyder, W. E.: Mechanism of the photoperiodic response of Plantago lanceolata L., a long-day plant. Amer. J. Bot. 35, 520–525 (1948).CrossRefGoogle Scholar
  585. Spear, I., and K. V. Thimann: The interrelation between CO2 metabolism and photoperiodism in Kalanchoë. II. Effect of prolonged darkness and high temperatures. Plant Physiol. 29, 414–417 (1954).CrossRefPubMedGoogle Scholar
  586. Spector, W. S. (Editor): Handbook of Biological Data. Philadelphia, Penn.: W.B. Saunders Company 1956. 584 pp. (See pp. 459–460.)Google Scholar
  587. Spoehr, H. A.: The culture of albino maize. Plant Physiol. 17, 397–410 (1942).CrossRefPubMedGoogle Scholar
  588. Sprent, Janet I., and H. N. Barber: Leaching of flower inhibitor from late varieties of peas. Nature (Lond.) 180, 200–201 (1957).CrossRefGoogle Scholar
  589. Steinberg, R. A.: Flowering responses of a variety of Nicotiana rustica to organic compounds in aseptic culture. Amer. J. Bot. 37, 547–551 (1950).CrossRefGoogle Scholar
  590. Stolwijk, J. A. J.: Photoperiodic and formative effects of various wave length regions in Cosmos bipinnatus, Spinacia oleracea, Sinapis alba and Pisum sativum. Proc. kon. ned. Akad. Wet. C 55, 489–502 (1952).Google Scholar
  591. Stolwijk, J. A. J.: Wave length dependence of photomorpho-genesis in plants. Meded. Landbouwhogeschool Wageningen 54, 181–244 (1954).Google Scholar
  592. Stolwijk, J. A. J., and J. A. D. Zeevaart: Wave length dependence of different light reactions governing flowering in Hyoscyamus niger. Proc. kon. ned. Akad. Wet. C 58, 386–396 (1955).Google Scholar
  593. Stout, M.: Translocation of the reproductive stimulus in sugar beets. Bot. Gaz. 107, 86–95 (1945).CrossRefGoogle Scholar
  594. Struckmeyer, B. Esther: Histological aspects of the changes from a vegetative to a flowering state. Amer. Naturalist 84, 135–150 (1950).CrossRefGoogle Scholar
  595. Tashima, Y.: Flower initiation in total darkness in a long day plant, Raphanus sativus L. Proc. Japan. Acad. 29, 271–273 (1953).Google Scholar
  596. Tashima, Y., and S. Imamura: Flower initiation in total darkness in Pharbitis Mil. Chois., a short day plant. Proc. Japan. Acad. 29, 581–585 (1953).Google Scholar
  597. Teubner, F. G., and S. H. Wittwer: Effect of N-m-tolylphthalamic acid on tomato flower formation. Science 122, 74–75 (1955).CrossRefPubMedGoogle Scholar
  598. Thompson, H. C.: Temperature in relation to vegetative and reproductive development in plants. Proc. Amer. Soc. hort. Sci. 37, 672–679 (1939).Google Scholar
  599. Thurlow, J.: Certain Aspects of Photoperiodism. Ph.D. Thesis, California Inst. Tech., 1948.Google Scholar
  600. Tincker, M. A. H.: The effect of length of day upon the growth and chemical composition of the tissues of certain economic plants. Ann. Bot. 42, 101–140 (1928).Google Scholar
  601. Todd, G.W., and A.W. Galston: A porphyrin pigment from photosensitive non-chlorophyllous plant tissue. Plant Physiol. 29, 311–318(1954).CrossRefPubMedGoogle Scholar
  602. Toole, E.H., V.K. Toole, H. A. Borthwick and S. B. Hendricks: Photocontrol of Lepidium seed germination. Plant Physiol. 30, 15–21 (1955).CrossRefPubMedGoogle Scholar
  603. Tournois, J.: Influence de la lumière sur la floraison du houblon japonais et du chauvre. C. R. Acad. Sci. (Paris) 155, 297–300 (1912).Google Scholar
  604. Vaartaja, O.: Photoperiodic responses in seedlings of Northern tree species. Canad. J. Bot. 35, 133–138 (1957).CrossRefGoogle Scholar
  605. Veen, R. van der: Influence of daylength on the dormancy of some species of the genus Populus. Physiol. Plantarum (Cph.) 4, 35–40 (1951).CrossRefGoogle Scholar
  606. Vegis, A.: Über den Einfluß der Temperatur und der täglichen Licht-Dunkel-Periode auf die Bildung der Ruheknospen, zugleich ein Beitrag zur Entstehung des Ruhezustandes. Symbolae bot. Upsalienses 14, 1–175 (1955).Google Scholar
  607. Vlitos, A. J., Werner Meudt and R. Beimler: The role of auxin in plant flowering. IV. A new unidentified naturally occurring indole hormone in normal and gamma irradiated Maryland Mammoth tobacco. Contrib. Boyce Thompson Inst. 18, 283–293 (1956).Google Scholar
  608. Waard, J. de, and J. W. W. Roodenburg: Premature flower-bud initiation in tomato seedlings caused by 2,3,5-triiodobenzoic acid. Proc. kon. ned. Akad. Wet. 61, 248–251 (1948).Google Scholar
  609. Wagenaar, S.: A preliminary study of photoperiodic and formative processes in relation to metabolism, with special reference to the effect of night temperature. Meded. Landbouwhogeschool Wageningen 54, 45–101 (1954).Google Scholar
  610. Wallrabe, E.: Über die Wirkung von Licht verschiedener Wellenlänge auf die Blütenbildung und die Sukkulenz der Blätter bei der Kurztagspflanze Kalanchoë blossfeldiana. Bot. Arch. 45, 281–316 (1943).Google Scholar
  611. Wareing, P. F.: Photoperiodism in woody species. Forestry 22, 211–221 (1949a).Google Scholar
  612. Wareing, P. F.: Photoperiodic control of leaf growth and cambial activity in Pinus silvestris. Nature (Lond.) 163, 770–771 (1949b).CrossRefGoogle Scholar
  613. Wareing, P. F.: Growth studies in woody species. I. Photoperiodism in first year seedlings of Pinus silvestris. Physiol. Plantarum (Cph.) 3, 258–276 (1950).CrossRefGoogle Scholar
  614. Wareing, P. F.: Growth studies in woody species. III. Further photoperiodic effects in Pinus silvestris. Physiol. Plantarum (Cph.) 4, 41–56 (1951).CrossRefGoogle Scholar
  615. Wareing, P. F.: Experimental induction of male cones in Pinus silvestris. Nature (Lond.) 171, 47 (1953a).CrossRefGoogle Scholar
  616. Wareing, P. F.: A new photoperiodic phenomenon in short-day plants. Nature (Lond.) 171, 614 (1953b).CrossRefGoogle Scholar
  617. Wareing, P. F.: Growth studies in woody species. V. Photoperiodism in dormant buds of Fagus sylvatica L. Physiol. Plantarum (Cph.) 6, 692–706 (1953c).CrossRefGoogle Scholar
  618. Wareing, P. F.: Growth studies in woody species. VI. The locus of photoperiodic perception in relation to dormancy. Physiol. Plantarum (Cph.) 7, 261–277 (1954).CrossRefGoogle Scholar
  619. Wareing, P. F.: Photoperiodism in plants. Ann. Rev. Plant Physiol. 7, 191–214 (1956).CrossRefGoogle Scholar
  620. Wareing, P. F., and M. Black: Similar effects of blue and infra-red radiation on light sensitive seeds. Nature (Lond.) 181, 1420–1421 (1958).CrossRefGoogle Scholar
  621. Wareing, P. F., and D. M. Roberts: Photoperiodic control of cambial activity in Robinia pseud-acacia L. New Phytologist 55, 356–366 (1956).CrossRefGoogle Scholar
  622. Wassink, E. C., C.M. J. Sluysmans and J. A. J. Stolwijk: On some photoperiodic and formative effects of coloured light on Brassica Rapa f. oleifera subf. annua. Proc. kon. ned. Akad. Wet. 53, 1466–1475 (1950).Google Scholar
  623. Wassink, E. C., J. A. J. Stolwijk and A. B. R. Beemster: Dependence of formative and photoperiodic reactions in Brassica Rapa var., Cosmos and Lactuca on wave length and time of irradiation. Proc. kon. ned. Akad. Wet. C 54, 421–432 (1951).Google Scholar
  624. Waxman, S.: The effect of length of day on the growth of woody plants. Proc. Plant Prop. Soc. 5, 47–49 (1955).Google Scholar
  625. Waxman, S.: The development of woody plants as affected by photoperiodic treatments. Ph. D. Thesis Cornell University, Ithaca, N. Y. 1957. 193 pp. Diss. Abstr. 17, 2372 (1957).Google Scholar
  626. Waxman, S., and J. P. Nitsch: Influence of light on plant growth. Amer. Nurseryman 105, No 10, 11–12 (1956).Google Scholar
  627. Weaver, J. E., and W. J. Himmel: Relation between the development of root system and shoot under long and short day illumination. Plant Physiol. 4, 435–457 (1929).CrossRefPubMedGoogle Scholar
  628. Wellensiek, S. J.: Photoperiodism and temperature in Perilla. Proc. kon. ned. Akad. Wet. C 55, 701–707 (1952).Google Scholar
  629. Went, F. W., and K. V. Thimann: Phytohormones. New York: Macmillan 1937. 294 pp.Google Scholar
  630. Werner, H. O.: The effect of a controlled nitrogen supply with different temperatures and photoperiods upon the development of the potato plant. Res. Bull. Neb. Agric. Exp. Stat. No 75, 132 pp. (1934).Google Scholar
  631. Werner, H. O.: Berry production and day-length in potato. Amer. Potato J. 18, 174–178 (1941).CrossRefGoogle Scholar
  632. Whitehead, M. R., and J. W. Mitchell: Effects of nutrient, photoperiod, and night temperature on development of guayule seeds. Bot. Gaz. 105, 14–24 (1943).CrossRefGoogle Scholar
  633. Whyte, R. O.: Crop Production and Environment. London: Faber and Faber 1946. 372 pp.Google Scholar
  634. Withrow, A. P.: The interrelationship of nitrogen supply and photoperiod on the flowering, growth and stem anatomy of certain long and short day plants. Butler Univ. Bot. Studies 7, 1–25 (1945).Google Scholar
  635. Withrow, A. P., and R. B. Withrow: Translocation of the floral stimulus in Xanthium. Bot. Gaz. 104, 409–416 (1943).CrossRefGoogle Scholar
  636. Withrow, A. P., and R. B. Withrow: Photoperiodic chlorosis in tomato. Plant Physiol. 24, 657–663 (1949).CrossRefPubMedGoogle Scholar
  637. Withrow, A. P., R. B. Withrow and J. P. Biebel: Inhibiting influence of the leaves on the photoperiodic response of Nobel spinach. Plant Physiol. 18, 294–298 (1953).CrossRefGoogle Scholar
  638. Withrow, R. B. (Editor): Photoperiodism and Related Phenomena in Plants and Animals. Pub. 55. Amer. Assoc. Advancement of Science, Washington, D.C. 1959. 903 pp.Google Scholar
  639. Withrow, R. B., and H.M. Benedict: Photoperiodic responses of annuals to intensity and wavelength of light. Plant Physiol. 11, 225–249 (1936).CrossRefPubMedGoogle Scholar
  640. Withrow, R. B., and J. P. Biebel: Photoperiodic response of certain long and short day plants to filtered radiation applied as a supplement to daylight. Plant Physiol. 11, 807–809 (1936).CrossRefPubMedGoogle Scholar
  641. Withrow, R. B., W. H. Klein and V. Elstad: Action spectra of morphogenic induction and its photoinactivation. Plant Physiol. 32, 453–462 (1957).CrossRefPubMedGoogle Scholar
  642. Withrow, R. B., W. H. Klein, L. Price and V. Elstad: Influence of visible and near infra-red radiant energy on organ development and pigment synthesis in bean and corn. Plant Physiol. 28, 1–14 (1953).CrossRefPubMedGoogle Scholar
  643. Withrow, R. B., and Alice P. Withrow: The effect of various wavebands of supplementary radiation on the photoperiodic response of certain plants. Plant Physiol. 15, 609–624 (1940).CrossRefPubMedGoogle Scholar
  644. Withrow, R. B., and Alice P. Withrow: Effect of intermittent irradiation on photoperiod responses. Plant Physiol. 19, 6–18 (1944).CrossRefPubMedGoogle Scholar
  645. Witsch, H. v.: Über den Zusammenhang zwischen Membranbau, Wuchsstoff Wirkung und der Sukkulenzzunahme von Kalanchoë blossfeldiana im Kurztag. Planta (Berl.) 31, 638–652 (1941).CrossRefGoogle Scholar
  646. Wittwer, S. H., and M. J. Bukovac: Gibberellins new chemicals for crop production. Quart. Bull. Mich. Agric. Exp. Stat. 39, 3–28 (1957a).Google Scholar
  647. Wittwer, S. H., and M. J. Bukovac: Gibberellins and higher plants. III. Induction of flowering in long-day annuals grown under short days. Quart. Bull. Mich. Agric. Exp. Stat. 39, 661–672 (1957b).Google Scholar
  648. Wittwer, S. H., and M. J. Bukovac: Gibberellin effects on temperature and photoperiodic requirements for flowering of some plants. Science 126, 30–31 (1957 c).CrossRefPubMedGoogle Scholar
  649. Wycherley, P. R.: Vegetative proliferation of floral spikelets in British grasses. Ann. of Bot. 18, 119–127 (1954).Google Scholar
  650. Yin, H. C.: Studies on the nyctinstatic movement of the leaves of Carica papaya. Amer. J. Bot. 28, 250–261 (1941).CrossRefGoogle Scholar
  651. Yusuff, N. D., and N. L. Dutt: Current Sci. 14, 304–305 (1945). (Cited by Sircar, in A. E. Murneek and R. O. Whyte, Eds., Vernalization and Photoperiodism.) Waltham, Mass.: Chronica Botanica Co. 1948.Google Scholar
  652. Zahner, R.: Effect of interrupted dark period on height growth of two tree species. Forest Sci. 1, 193–195 (1955).Google Scholar
  653. Zeeuw, D. de, and A. C. Leopold: The promotion of floral initiation by auxin. Amer. J. Bot. 43, 47–50 (1956).CrossRefGoogle Scholar
  654. Zeevaart, J. A. D.: Flowering by means of grafting. III. Translocation of floral stimulus through day-neutral inter-stock. Proc. kon. ned. Akad. Wet. C 60, 523–530 (1957a).Google Scholar
  655. Zeevaart, J. A. D.: Flowering by means of grafting. IV. Flowering of two long-day Sedum species in short-day on induced Kalanchoë stocks. Proc. kon. ned. Akad. Wet. C 60, 630–639 (1957b).Google Scholar
  656. Zhdanova, L. P.: Geotropic reaction of leaves and content of growth hormone in plants. C. R. (Doklady) Acad. Sci. URSS. 49, 62–65 (1945).Google Scholar
  657. Zhdanova, L. P.: (On the rate of transport of flower hormone under photoperiodic induction.) C. R. (Doklady) Acad. Sci. URSS. 61, 553–556 (1948).Google Scholar
  658. Zimmerman, P. W., and A.E. Hitchcock: Tuberization of artichokes regulated by capping stem tips with black cloth. Contrib. Boyce Thompson Inst. 8, 311–315 (1936).Google Scholar
  659. Zimmerman, P. W., and A.E. Hitchcock: Flowering habit and correlation of organs modified by triiodobenzoic acid. Contrib. Boyce Thompson Inst. 12, 491–496 (1942).Google Scholar
  660. Zimmerman, P. W., and A.E. Hitchcock: Triiodobenzoic acid influences flower formation in tomatoes. Contrib. Boyce Thompson Inst. 15, 353–361 (1949).Google Scholar
  661. Zimmerman, P. W., and J. Kjennerud: Flowering and other responses induced in Piquera trinervia with photoperiodic treatment. Contrib. Boyce Thompson Inst. 16, 177–189 (1950).Google Scholar
  662. Zobel, M. P., and G. C. Hanna: Sweet potatoes. Calif. Agric. 7, 13 (1953).Google Scholar
  663. Appleman, D., and H. T. Pyfrom: Changes in catalase activity and other responses induced in plants by red and blue light. Plant Physiol. 30, 543–549 (1955).CrossRefPubMedGoogle Scholar
  664. Bayliss, W. M., and E. H. Starling: The chemical regulation of the secretory process. Proc. roy. Soc. B 73, 310–322 (1904).CrossRefGoogle Scholar
  665. Blaney, L. T., and K. C. Hamner: Interrelations among effects of temperature, photoperiod, and dark period on floral initiation of Biloxi soybean. Bot. Gaz. 119, 10–24 (1957).CrossRefGoogle Scholar
  666. Bocchi, A., F. Lona and R. M. Sachs: Photoperiodic induction of disbudded Perilla plants. Plant Physiol. 31, 480–482 (1956).CrossRefPubMedGoogle Scholar
  667. Bonner, J.: Further experiments on flowering in Xanthium. Bot. Gaz. 110, 625–627 (1949).CrossRefGoogle Scholar
  668. Bonner, J., and J. L. Liverman: Hormonal control of flower initiation. In : Growth and Differentiation in Plants, pp. 283–304. Ed. W. E. Loomis. Ames, Iowa: Iowa State College Press 1953.Google Scholar
  669. Bonner, J., and J. Thurlow: Inhibition of photoperiodic induction in Xanthium by applied auxin. Bot. Gaz. 110, 613–624 (1949).CrossRefGoogle Scholar
  670. Borthwick, H. A., S. B. Hendricks and M. W. Parker: Action spectrum for photoperiodic control of floral initiation of a long-day plant, Wintex barley (Hordeum vulgare). Bot. Gaz. 110, 103–118 (1948).CrossRefGoogle Scholar
  671. Borthwick, H. A., S. B. Hendricks and M. W. Parker: The reaction controlling floral initiation. Proc. nat. Acad. Sci. (Wash.) 38, 929–934 (1952b).CrossRefGoogle Scholar
  672. Borthwick, H. A., S. B. Hendricks, M. W. Parker, E. H. Toole and V. K. Toole: A reversible photo-reaction controlling seed germination. Proc. nat. Acad. Sci. (Wash.) 38, 662–666 (1952).CrossRefGoogle Scholar
  673. Borthwick, H. A., S. B. Hendricks, E.H. Toole and V. K. Toole : Action of light on lettuce-seed germination. Bot. Gaz. 115, 205–225 (1954).CrossRefGoogle Scholar
  674. Borthwick, H. A., and M. W. Parker: Effectiveness of photoperiodic treatments of plants of different age. Bot. Gaz. 100, 245–249 (1938).CrossRefGoogle Scholar
  675. Borthwick, H. A., and M. W. Parker: Photoperiodic perception in Biloxi soybeans. Bot. Gaz. 100, 374–387 (1938b).CrossRefGoogle Scholar
  676. Borthwick, H. A., and M. W. Parker: Light in relation to flowering and vegetative development. Report, 13th Intern. Hort. Congr. 1952, pp.801–810.Google Scholar
  677. Borthwick, H.A., M.W. Parker and P.H. Heinze: Influence of localized low temperature on Biloxi soybean during photoperiodic induction. Bot. Gaz. 102, 792–800 (1941).CrossRefGoogle Scholar
  678. Borthwick, H. A., M. W. Parker and S. B. Hendricks: Recent developments in the control of flowering by photoperiod. Amer. Naturalist 84, 117–134 (1949).Google Scholar
  679. Bünning, E.: Endonome Tagesrhythmik und Photoperiodismus bei Kurztagpflanzen. Biol. Zbl. 64, 161–183 (1944).Google Scholar
  680. Bünning, E.: Weitere Versuche über die Beziehung zwischen endogener Tagesrhythmik und Photoperiodismus. Z. Naturforsch. 3b, 457–464 (1948).Google Scholar
  681. Bünning, E.: Über die photophile und skotophile Phase der endogenen Tagesrhythmik. Planta (Berl.) 38, 521–540 (1950).CrossRefGoogle Scholar
  682. Bünning, E.: Über Langtagpflanzen mit doppelter photophiler Phase. Ber. dtsch. bot. Ges. 64, 85–90 (1951).Google Scholar
  683. Bünning, E.: Der Verlauf der endogenen Tagesrhythmik bei photoperiodi-schen Störlichtversuchen mit Soja. Physiol. Plantarum (Cph.) 7, 538–547 (1954).CrossRefGoogle Scholar
  684. Bünning, E. Endogenous rhythms in plants. Ann. Rev. Plant. Physiol. 7, 71–90 (1956).CrossRefGoogle Scholar
  685. Bünning, E., u. W. Könitz: Diurnal antagonisitische Schwankungen von Hell- und Dunkelrot-Empfindlichkeit einer Kurztagpflanze. Naturwiss. 44, 568 (1957).CrossRefGoogle Scholar
  686. Bünning, E., u. L. Lörcher: Regulierung und Auslösung endogen-tagesperiodischer Blattbewegungen durch verschiedene Lichtqualitäten. Naturwiss. 44, 472 (1957).CrossRefGoogle Scholar
  687. Bünsow, R., u. R. Harder: Blütenbildung von Bryophyllum durch Gibberellin. Naturwiss. 43, 479–480 (1956).CrossRefGoogle Scholar
  688. Bünsow, R., u. R. Harder: Blütenbildung von Lapsana durch Gibberellin. Naturwiss. 43, 527 (1956).CrossRefGoogle Scholar
  689. Bünsow, R., u. R. Harder: Blütenbildung von Adonis und Rudbeckia durch Gibberellin. Naturwiss. 44, 453–454 (1957).CrossRefGoogle Scholar
  690. Cajlachjan, M. C. Translocation of flowering hormones across various plant organs. III. Across the root. C. R. Acad. Sci. URSS. 27, 373–376 (1940).Google Scholar
  691. Bünsow, R., u. R. Harder: Translocation of flowering hormones in the plant as affected by temperature and narcotics. C. R. Acad. Sci. URSS. 31, 949–952 (1941).Google Scholar
  692. Bünsow, R., u. R. Harder: Photoperiodic response of plants when their individual leaves go on different daylengths. C. R. Acad. Sci. URSS. 54, 735–738 (1946).Google Scholar
  693. Bünsow, R., u. R. Harder: Influence of leaves exposed to different daylength upon development of shoots. C. R. Acad. Sci. URSS. 54, 837–840 (1946b).Google Scholar
  694. Bünsow, R., u. R. Harder: On the nature of the inhibitory effect of leaves upon flowering. C. R. Acad. Sci. URSS. 55, 69–72 (1947).Google Scholar
  695. Bünsow, R., u. R. Harder: Photoperiodism and principle physiological processes in plants. J. gen. Biol. 17, 121–141 (1956) [Russian].Google Scholar
  696. Bünsow, R., u. R. Harder: Hormonal factors in the flowering of plants. Fiziol. Rast. 5, 541–560 (1958).Google Scholar
  697. Bünsow, R., u. R. Harder: The influence of gibberellins on growth and flowering. In : Fourth Internat. Symposium on Plant Growth Hormones. Edit, by W. Klein. Ames, Iowa: Iowa State College Press (in press).Google Scholar
  698. Cajlachjan, M. C. and R.G. Butenko: Movements of assimilates of leaves to shoots under differential photoperiodic conditions of leaves. Fiz. Rast. 4, 450–462 (1957) [Russian].Google Scholar
  699. Cajlachjan, M. C, and L. M. Yarkovaja: New facts in support of the hormonal theory of plant development. IL C.R. Acad. Sci. URSS. 15, 215–217 (1937).Google Scholar
  700. Carr, D. J.: On the nature of photoperiodic induction. I. Photoperiodic treatments applied to detached leaves. Physiol. Plantarum (Cph.) 6, 672–679 (1953).CrossRefGoogle Scholar
  701. Carr, D. J.: A critical experiment on Bünning’s theory of photoperiodism. Z. Naturforsch. 76, 570 (1952).Google Scholar
  702. Carr, D. J.: On the nature of photoperiodic induction. III. The summation of the effects of inductive photoperiodic cycles. Physiol. Plantarum (Cph.) 8, 512–526 (1955).CrossRefGoogle Scholar
  703. Carr, D. J.: On the nature of photoperiodic induction. IV. Preliminary experiments on the effect of light following the inductive long dark period in Xanthium pennsylvanicum. Physiol. Plantarum (Cph.) 10, 249–265 (1957).CrossRefGoogle Scholar
  704. Claes, H., u. A. Lang: Die Blütenbildung von Hyoscyamus niger in 48stündigen Licht-Dunkel-Zyklen und in Zyklen mit aufgeteilten Lichtphasen. Z. Naturforsch. 2, 56–63 (1947).Google Scholar
  705. Claes, H.,u. G. Melchers: Der nächtliche Stärkeabbau bei einer Kurztag- und einer tagneutralen Sippe von Xanthium in verschiedenen photoperiodischen Bedingungen. Z. Naturforsch. 4b, 38–45 (1949).Google Scholar
  706. Clauss, H., u. Werner Rau: Über die Blütenbildung von Hyoscyamus niger und Arabidopsis thaliana in 72-Stunden-Zyklen. Z. Bot. 44, 437–454 (1956).Google Scholar
  707. Cooke, A. R.: Changes in free auxin content during the photo-induction of short-day plants. Plant Physiol. 29, 440–444 (1954).CrossRefPubMedGoogle Scholar
  708. Denffer, D. V., u. H. Gründler: Über Wuchsstoffinduzierte Blühhemmung bei Langtagpflanzen. Biol. Zbl. 69, 272–282 (1950).Google Scholar
  709. Dostal, R.: Flowering hormones. Sbor. cekoslov. Akad. Zem. 22, 241–247 (1950).Google Scholar
  710. Downs, R. J.: Photoreversibility of flower initiation. Plant Physiol. 31, 279–284 (1956).CrossRefPubMedGoogle Scholar
  711. Downs, R. J., S. B. Hendricks and H. A. Borthwick: Photoreversible control of elongation of pinto beans and other plants under normal conditions of growth. Bot. Gaz. 118, 199–208 (1957).CrossRefGoogle Scholar
  712. Eguchi, T. : Effects of the day-length upon the time of differentiation of flower bud and the subsequent development of flowering. Proc. imp. Acad. Japan 13, 332–333 (1937).Google Scholar
  713. Estevesde Sousa, A. : The action of synthetic auxin and synthetic antiauxin in the flowering of Kalanchoë rotundifolia Haw. Port. Acta biol. 3, 91–108 (1950).Google Scholar
  714. Fabian, L: Beiträge zum Lang- und Kurztagsproblem. Z. Bot. 33, 305–357 (1938).Google Scholar
  715. Fisher, J. E., and W. E. Loomis: Auxin florigen balance in flowering of soybean. Science 119, 71–73 (1954).CrossRefPubMedGoogle Scholar
  716. Flint, L. H., and E. D. McAlister: Wavelengths of radiation in the visible spectrum promoting the germination of light-sensitive lettuce seed. Smithson. Misc. Coll. 96, No 2 (1937).Google Scholar
  717. Fortanier, E. J.: Some observations on the influence of spectral regions of light on stem elongation, flower bud elongation, flower bud opening and leaf movement in Arachis hypogea, L. Meded. Landbouwhogesch., Wageningen 54, 103–114 (1954).Google Scholar
  718. Funke, G. L.: The photoperiodic responses of Anthemis tinctoria in different ranges of wavelength. Proc. Acad. Sci. Amst. 44, 989–992 (1941).Google Scholar
  719. Funke, G. L.: Observations on the flowering photoperiodicity. Rec. Trav. bot. néerl. 40, 393–412 (1943).Google Scholar
  720. Funke, G. L.: The photoperiodicity of flowering under short-day with supplemental light of different wavelengths. In: Vernalization and Photoperiodism. Edit, by A. E. Murneek and R. O. Whyte, p. 79–82. Waltham, Massachusetts: Chronica Botanica Co. 1948.Google Scholar
  721. Austec-Mathon, E., et C. Mathon: Lumière et developpement. Bull. Soc. bot. France 105, 323–332 (1958).Google Scholar
  722. Galston, A. W. : The effect of 2,3,5-triiodobenzoic acid on the growth and flowering of soybeans. Amer. J. Bot. 34, 356–369 (1947).CrossRefGoogle Scholar
  723. Galston, A. W. : Transmission of the floral stimulus in soybean. Bot. Gaz. 110, 495–501 (1949).CrossRefGoogle Scholar
  724. Galston, A. W., and S. M. Siegel: Antiperoxidative action of the cobaltous ion and its consequences for plant growth. Science 120, 1070–1071 (1954).CrossRefPubMedGoogle Scholar
  725. Gardner, F. P., and W. E. Loomis: Floral induction and development in orchard grass. Plant Physiol. 28, 201–217 (1953).CrossRefPubMedGoogle Scholar
  726. Garner, W. W., and H. A. Allard: Localization of the response in plants to relative length of day and night. J. agric. Res. 31, 555–566 (1925).Google Scholar
  727. Garner, W. W., and H. A. Allard: Effects of abnormally long and short alternations of light and darkness on growth and development of plants. J. agric. Res. 42, 629–651 (1931).Google Scholar
  728. Gentcheff, G., and A. Gustafsson: The cultivation of plant species from seed to flower and seed in different agar solutions. Hereditas (Lund) 26, 250–256 (1940).CrossRefGoogle Scholar
  729. Gott, M. B., F. G. Gregory and O. N. Purvis: Studies in vernalization of cereals. XIII. Photoperiodic control of stages in flowering between initiation and ear formation in vernalized and unvernalized Petkus winter rye. Ann. Bot. (Lond.), N. S. 21, 87–126 (1955).Google Scholar
  730. Gregory, F. G.: The control of flowering in plants. Symp. Soc. exp. Biol. 2, 75–103 (1948).Google Scholar
  731. Gregory, F. G., I. Spear and K. V. Thimann: The interrelation between CO2 metabolism and photoperiodism in Kalanchoë. Plant Physiol. 29, 220–229 (1954).CrossRefPubMedGoogle Scholar
  732. Guttridge, C. G.: Photoperiodic promotion of vegetative growth in strawberry. Nature (Lond.) 178, 50 (1956).CrossRefGoogle Scholar
  733. Hamner, K. C: Interrelation of light and darkness in photoperiodic induction. Bot. Gaz. 101, 658–687 (1940).CrossRefGoogle Scholar
  734. Hamner, K. C: Hormones and Photoperiodism. Cold. Spr. Harb. Symp. quant. Biol. 10, 49–60 (1942).CrossRefGoogle Scholar
  735. Hamner, K. C: Factors governing the induction and development of reproductive structures in plants. Symp. Soc. exp. Biol. 2, 104–116 (1948).Google Scholar
  736. Hamner, K. C., and J. Bonner: Photoperiodism in relation to hormones as factors in floral initiation and development. Bot. Gaz. 100, 388–431 (1938).CrossRefGoogle Scholar
  737. Hamner, K. C, and K. K. Nanda: A relationship between applications of indoleacetic acid and the high-intensity-light reaction of photoperiodism. Bot. Gaz. 118, 13–18 (1956).CrossRefGoogle Scholar
  738. Hamner, K. C, and A. W. Naylor: Photoperiodic responses of dill, a very sensitive long day plant. Bot. Gaz. 100, 853–861 (1939).CrossRefGoogle Scholar
  739. Harder, R.: Notiz über die Abhängigkeit der Ausbildung der Blütenstände von der Größe der photoperiodisch behandelten Blattfläche bei Kalanchoë blossfeldiana. Flora (Jena), N. F. 38, 1–10 (1944).Google Scholar
  740. Harder, R.: Über photoperiodisch bedingte Organ- und Gestaltbildung bei den Pflanzen. Naturwiss. 83, 1–11 (1946).Google Scholar
  741. Harder, R.: Vegetative and reproductive development of Kalanchoë blossfeldiana as influenced by photoperiodism. Symp. Soc. exp. Biol. 2, 117–138 (1948).Google Scholar
  742. Harder, R., u. O. Bode: Über die Wirkung von Zwischenbelichtungen während der Dunkelperiode auf das Blühen, die Verlaubung und die Blattsukkulenz bei der Kurztagpflanze Kalanchoë blossfeldiana. Planta (Berl.) 38, 469–504 (1943).CrossRefGoogle Scholar
  743. Harder, R., O. Bode u. H. V. Witsch: Über Wechselbeziehungen zwischen Blütenbildung, Brakteenverlaubung und Sukkulenz der Laubblätter bei Kalanchoë blossfeldiana. Flora (Jena), N. F. 36, 85–100 (1942).Google Scholar
  744. Harder, R., O. Bode u. H. V. Witsch: Photoperiodische Untersuchungen in kohlensäurefreier Atmosphäre bei der Kurz-tagpflanze Kalanchoë blossfeldiana. Jb. wiss. Bot. 91, 381–394 (1943).Google Scholar
  745. Harder, R., u. R. Bünsow: Über die Wirkung der Tageslänge vor der Kurztaginduktion auf die Blütenbildung von Kalanchoë blossfeldiana. Planta (Berl.) 43, 315–324 (1954).CrossRefGoogle Scholar
  746. Harder, R., u. R. Bünsow: Zusammenwirken von Gibberellin mit photoperiodisch bedingten blühfördernden und blühhemmenden Vorgängen bei Kalanchoë blossfeldiana. Naturwiss. 44, 454 (1957).CrossRefGoogle Scholar
  747. Harder, R., u. G. Gümmer: Über die untere kritische Tageslänge verschiedener Licht-Dunkelrhythmen. Planta (Berl.) 35, 88–99 (1947).CrossRefGoogle Scholar
  748. Harder, R., u. G. Gümmer: Über die Blütenbildung von Kalanchoë blossfeldiana in verschiedenen Licht-Dunkel-Rhythmen. Planta (Berl.) 37, 12–47 (1949).CrossRefGoogle Scholar
  749. Harder, R., H. V. Witsch u. O. Bode: Über Erzeugung einseitig und allseitig verlaubter Infloreszenzen durch photoperiodische Behandlung von Laubblättern. J. wiss. Bot. 90, 546–591 (1942).Google Scholar
  750. Hartmann, H. T.: Some effects of temperature and photoperiod on flower formation and runner production in the strawberry. Plant Physiol. 22, 407–420 (1947).CrossRefPubMedGoogle Scholar
  751. Heath, O. V. S., and H. Holds-worth: Morphogenetic factors as exemplified by the onion plant. Symp. Soc. exp. Biol. 2, 326–350 (1948).Google Scholar
  752. Hendricks, S. B.: Control of growth and reproduction by light and darkness. Amer. Scientist 44, 229–247 (1956).Google Scholar
  753. Hendricks, S. B., H. A. Borthwick and R. J. Downs: Pigment conversion in the formative responses of plants to radiation. Proc. nat. Acad. Sci. (Wash.) 42, 19–26 (1956).CrossRefGoogle Scholar
  754. Hibbard, A. D.: Photoperiodism and enzyme activity in the soybean plant. Missouri Agric. Exp. Stat. Res. Bull. 271 (1937).Google Scholar
  755. Holds-worth, M. : The effect of length of dark period on the amplitude of leaf movement in Bauhinia monandra. J. exp. Bot. 10, 104–108 (1959).CrossRefGoogle Scholar
  756. Hussey, G.: Experiments with two long day plants designed to test Bünning’s theory of photoperiodism. Physiol. Planta-rum (Cph.) 7, 253–260 (1954).CrossRefGoogle Scholar
  757. Hussey, G., and F. G. Gregory: The effect of auxin on the flowering behavior of Wintex barley and Petkus rye. Plant Physiol. 29, 292–296 (1954).CrossRefPubMedGoogle Scholar
  758. Imamtjra, S.: Photoperiodic initiation of flower primordia in Japanese morning glory, Pharbitis Nil Chois. Proc. imp. Acad. Japan 29, 368–373 (1953).Google Scholar
  759. Imamtjra, S., and A. Takimoto: Transmission rate of photoperiodic stimulus in Pharbitis Nil. Bot. Mag. (Tokyo) 68, 260–266 (1955).Google Scholar
  760. Kadman-Zahavi, A. : Effects of red and far-red radiation on seed germination. Nature (Lond.) 180, 996–997 (1957).CrossRefGoogle Scholar
  761. Kandeler, R.: Über die Blütenbildung bei Lemna gibba L. II. Das Wirkungsspektrum von blühförderndem Schwachlicht. Z. Bot. 44, 153–174 (1956).Google Scholar
  762. Khudari, A. K., and K. C. Hamner: Effect of ethylene chlorohydrin on floral initiation in Xanthium. Bot. Gaz. 115, 289–291 (1954).CrossRefGoogle Scholar
  763. Konishi, M.: Studies on development of flowering stalks in long-day plants in relation to auxin metabolism. Mem. Coll. Agric. Kyoto No 75 (1956).Google Scholar
  764. Kunitake, G. M., P. Saltman and A. Lang: The products of CO2 fixation in leaves of long- and short-day treated Kalanchoë blossfeldiana. Plant Physiol. 32, 201–203 (1957).CrossRefPubMedGoogle Scholar
  765. Ktjnitake, G. M., C.M. Stitt and P. Saltman: The dark fixation of CO2 by succulent leaves: The metabolism of the products formed during the dark fixation of CO2 upon exposure to light. Plant Physiol. Suppl. 32, vi(1957b).Google Scholar
  766. Laibach, F., u. F. J. Kribben: Die Blütenbildung als photoperiodische Reaktion. Z. Naturforsch. 5, 160–166 (1950).Google Scholar
  767. Lang, A.: Über die Bedeutung von Licht und Dunkelheit in der photoperiodischen Reaktion von Langtagpflanzen. Biol. Zbl. 61, 427–432 (1941).Google Scholar
  768. Lang, A.: Physiology of flowering. Ann. Rev. Plant Physiol. 3, 265–306 (1952).CrossRefGoogle Scholar
  769. Lang, A.: Stem elongation in a rosette plant, induced by gibberellic acid. Naturwiss. 43, 257–258 (1956).CrossRefGoogle Scholar
  770. Lang, A.: Induction of flower formation in biennial Hyoscyamus by treatment with gibberellin. Naturwiss. 43, 284–285 (1956).CrossRefGoogle Scholar
  771. Lang, A.: The effect of gibberellin upon flower formation. Proc. nat. Acad. Sci. (Wash.) 43, 709–717 (1957).CrossRefGoogle Scholar
  772. Lang, A., u. G. Melchers: Die photoperiodische Reaktion von Hyoscyamus niger. Planta (Berl.) 33, 653–702 (1943).CrossRefGoogle Scholar
  773. Lang, A., J. A. Sandoval and A. Badri: Induction of bolting and flowering in Hyoscyamus and Samolus by a gibberellin-like material from a seed plant. Proc. nat. Acad. Sci. (Wash.) 43, 960–964 (1957).CrossRefGoogle Scholar
  774. Langston, R., and A. C. Leopold: The dark fixation of carbon dioxide as a factor in photoperio-dism. Plant Physiol. 29, 436–440 (1954).CrossRefPubMedGoogle Scholar
  775. Leopold, A. C.: Flower initiation in total darkness. Plant Physiol. 24, 530–533 (1953).CrossRefGoogle Scholar
  776. Leopold, A. C., and K. V. Thimann: The effect of auxin on flower initiation. Amer. J. Bot. 36, 342–347 (1949).CrossRefGoogle Scholar
  777. Lewis, H., and F. W. Went: Plant growth under controlled conditions. IV. Response of California annuals to photoperiod and temperature. Amer. J. Bot. 32, 1–12 (1945).CrossRefGoogle Scholar
  778. Lincoln, R. G., and K. C. Hamner: An effect of gibberellic acid on the flowering of Xanthium, a short-day plant. Plant Physiol. 33, 101–104 (1958).CrossRefPubMedGoogle Scholar
  779. Lincoln, R. G., K. A. Raven and K. C. Hamner: Certain factors influencing expression of the flowering stimulus in Xanthium. I. Translocation and inhibition of the flowering stimulus. Bot. Gaz. 117, 193–206 (1956).CrossRefGoogle Scholar
  780. Lincoln, R. G., K. A. Raven and K. C. Hamner: Certain factors influencing the expression of the flowering stimulus in Xanthium. II. The relative contribution of buds and leaves to the effectiveness of inductive treatment. Bot. Gaz. 119, 179–185 (1958).CrossRefGoogle Scholar
  781. Liverman, J. L.: The physiology and biochemistry of flowering. Doctoral Thesis, California Institute of Technology, Pasadena 1952.Google Scholar
  782. Liverman, J. L.: The physiology of flowering. Ann. Rev. Plant Physiol. 6, 177–210 (1955).CrossRefGoogle Scholar
  783. Liverman, J. L., and J. Bonner: Biochemistry of the photoperiodic response. The high-intensity-light reaction. Bot. Gaz. 115, 121–128 (1953).CrossRefGoogle Scholar
  784. Liverman, J. L., and A. Lang: Induction of flowering in long day plants by applied indoleacetic acid. Plant Physiol. 31, 147–150 (1956).CrossRefPubMedGoogle Scholar
  785. Lockhart, J. A.: Post-dark period processes in the leaves of short-day plants. Proc. IX. Intern. Bot. Congr. 2, 233 (1959).Google Scholar
  786. Lockhart, J. A., and K. C. Hamner: Effect of darkness and indoleacetic acid following exposure to short day on the floral response of Xanthium, a short-day plant. Bot. Gaz. 116, 133–142 (1954).CrossRefGoogle Scholar
  787. Lockhart, J. A., and K. C. Hamner: Partial reactions in the formation of the floral stimulus in Xanthium. Plant Physiol. 29, 509–513 (1954b).CrossRefPubMedGoogle Scholar
  788. Loehwing, W. F. : Photoperiodic aspects of phasic development. Science 90, 552 (1939).CrossRefPubMedGoogle Scholar
  789. Lona, F.: Sui fenomeni di induzione, post-effecto e localizzazione fotoperiodica. L’induziola autogena indiretta delle foglie primordiali di Xanthium italicum Moretti. Nuovo G. bot. ital. 53, 548–575 (1956).Google Scholar
  790. Lona, F.: Sul comportamento fotoperiodico di alcune specie di Xanthium. Nuovo G. bot. ital., n. s. 53 (1946).Google Scholar
  791. Lona, F.: L’induzione fotoperiodica di foglie staccate. Boll. Soc. ital. Biol. sper. 25, 1–3 (1949).Google Scholar
  792. Lona, F.: La fioritura delle brevidiurne a notte continua. Nuovo G. bot. ital., n. s. 56, 479–515 (1949).CrossRefGoogle Scholar
  793. Lona, F.: Osservazioni orientative circa l’effetto dell’acido Gibberellico sullo sviluppo riproduttivo di alcune longidiurne e brevidiurne. L’ateneo Parmense 27, 867–875 (1956).Google Scholar
  794. Lona, F.: Lazione dell’acido gibberellico sull’accrescimento caulinare di talune piante erbacee in condizioni esterne controllate. Nuovo G. bot. ital., n. s. 63, 61–76 (1956b).CrossRefGoogle Scholar
  795. Lona, F.: Azione gibberellinosimile di estratti ottenuti da giovani strutture fiorali di Brassica Napus L. var. Oleifera. L’Ateneo Parmense 28, 111–115 (1957).Google Scholar
  796. Long, E. M.: Photoperiodic induction as influenced by environmental factors. Bot. Gaz. 101, 168–188 (1939).CrossRefGoogle Scholar
  797. Madan, C. L. : Die Verteilung der freien Aminosäuren in der Pflanze und ihre Beeinflussung durch photoperiodische Induktion. Planta (Berl.) 47, 53–80 (1956).CrossRefGoogle Scholar
  798. Madzhirova, L. D.: The influence of light and temperature on the development of the fundamental stages of rice organogenesis. Vestn. Mosk. Univ. Ser. Biol., Pochvoved., Geol. Geogr. 2, 81–94 (1956) (Biol. Abst. 8467, 1960) [Russian].Google Scholar
  799. Mann, L. K.: Effect of some environmental factors on floral initiation in Xanthium. Bot. Gaz. 102, 339–356 (1940).CrossRefGoogle Scholar
  800. McKinney, H. H., and W. J. Sando: Earliness of sexual reproduction in wheat as influenced by temperature and light in relation to growth phases. J. agric. Res. 51, 621–641 (1935).Google Scholar
  801. Meijer, G.: The influence of light quality on the flowering response of Salvia occi-dentalis. Acta bot. neerl. 6, 395–406 (1957).Google Scholar
  802. Meijer, G., and R. van der Veen: Wavelength dependence on photoperiodic responses. Acta bot. neerl. 6, 429–433 (1957).Google Scholar
  803. Melchers, G.: Die Blühhormone. Ber. dtsch. bot. Ges. 57, 29–48 (1939).Google Scholar
  804. Melchers, G.: Die Beteiligung der endonomen Tagesrhythmik am Zustandekommen der photoperiodischen Reaktion der Kurztagpflanze Kalanchoë blossfeldiana. Z. Naturforsch. 11B, 544–548 (1956).Google Scholar
  805. Melchers, G., and A. Lang: Die Physiologie der Blütenbildung. Biol. Zbl. 67, 105–174 (1948).Google Scholar
  806. Metzner, H.: Veränderungen der Blattproteine bei photoperiodischer Induktion. Planta (Berl.) 45, 493–534 (1955).CrossRefGoogle Scholar
  807. Michener, H. D.: Dormancy and apical dominance in potato tubers. Amer. J. Bot. 29, 558–568 (1942).CrossRefGoogle Scholar
  808. Mohr, H.: Der Einfluß monochromatischer Strahlung auf das Längenwachstum des Hypocotyls und auf die Anthocyanbildung bei Keimlingen von Sinapis alba L. Planta (Berl.) 49, 389–405 (1957).CrossRefGoogle Scholar
  809. Murneek, A. E.: Biochemical studies of photoperiodism in plants. Missouri Agr. Exp. Stat. Res. Bull. 268 (1937).Google Scholar
  810. Murneek, A. E.: Physiological factors in reproduction of plants. Growth 3, 295–315 (1939).Google Scholar
  811. Murneek, A. E., and R. O. Whyte (edit.): Vernalization and Photoperiodism. Waltham, Massachusetts: Chronica Botanica Co. 1948.Google Scholar
  812. Nakayama, S.: Experimental researches on photoperiodism. (2) Analysis of the mechanism of the dark period reaction by the high-temperature interruption. Bull. Soc. Plant Ecology 3, 95–107 (1953) [Japanese].Google Scholar
  813. Nakayama, S.: The effects of certain metabolic inhibitors on the dark reaction during photoperiodic treatment. Bot. Mag. (Tokyo) 68, 61–62 (1955).Google Scholar
  814. Nakayama, S., and Y. Morishita: Experimental researches on photoperiodism. (5) The effect of chloroform on the dark reaction. Bull. Fac. Miyazaki 1, 166–172 (1956) [Japanese].Google Scholar
  815. Nanda, K. K., and K. C. Hamner: Studies on the nature of the endogenous rhythm affecting photoperiodic responses of Biloxi soybean (Glycine max. L. Merr.). Bot. Gaz. 120, 14–25 (1958).CrossRefGoogle Scholar
  816. Naylor, A. W. : Effect of some environmental factors on photoperiodic induction of beet and dill. Bot. Gaz. 102, 557–575 (1941).CrossRefGoogle Scholar
  817. Nelson, C. D., and P. R. Gorham: Uptake and translocation of C14-labelled sugars applied to primary leaves of soybean seedlings. Canad. J. Bot. 35, 339–347 (1957).CrossRefGoogle Scholar
  818. Nuernbergk, E. L.: Über den zeitlichen Verlauf der Photosynthese bei Gewächshauspflanzen. Gartenbauwiss. 1 (19), 391–398 (1955).Google Scholar
  819. Ochoa, S. : Biosynthesis of dicarboxylic and tricarboxylic acids by carbon dioxide fixation. Symp. Soc. exp. Biol. 5, 29–51 (1951).Google Scholar
  820. Ogawa, Y., u. S. Imamura: Über die fördernde Wirkung von Samendiffusat auf Pharbitis nil, Chois. Proc. imp. Akad. Japan 34, 629–630 (1958).Google Scholar
  821. Ogawa, Y., u. S. Imamura: Über die fördernde Wirkung von Gibberellin auf die Blütenbildung einer Kurztagpflanze, Pharbitis nil, Chois. Proc. imp. Akad. Japan 34, 631–632 (1958).Google Scholar
  822. Okuda, M. : Flower formation of Xanthium canadense under long day conditions induced by grafting with long day plants. Bot. Mag. (Tokyo) 66, 247–255 (1953).Google Scholar
  823. Parker, M. W., and H. A. Borthwick: Floral initiation in Biloxi soybeans as influenced by photosynthetic activity during the induction period. Bot. Gaz. 102, 256–268 (1940).CrossRefGoogle Scholar
  824. Parker, M. W., and H. A. Borthwick: Influence of temperature on photoperiodic reactions in leaf blades of Biloxi soybeans. Bot. Gaz. 104, 612–619 (1943).CrossRefGoogle Scholar
  825. Parker, M. W., and H. A. Borthwick: Influence of light on plant growth. Ann. Rev. Plant Physiol. 1, 43–58 (1950).CrossRefGoogle Scholar
  826. Parker, M. W., S. B. Hendricks and H. A. Borthwick: Action spectrum for the photoperiodic control of floral initiation of the long-day plant Hyoscyamus niger. Bot. Gaz. 111, 242–252 (1950).CrossRefGoogle Scholar
  827. Parker, M. W., S. B. Hendricks, H. A. Borthwick and J. N. Scully: Action spectrum for the photoperiodic control of floral initiation of short day plants. Bot. Gaz. 108, 1–26 (1946).CrossRefGoogle Scholar
  828. Parker, M. W., S. B. Hendricks, H. A. Borthwick and F. W. Went: Spectral sensitivities for leaf and stem growth of etiolated pea seedlings and their similarity to action spectra for photoperiodism. Amer. J. Bot. 36, 194–204 (1949).CrossRefGoogle Scholar
  829. Purvis, O. N.: An analysis of the influence of temperature during germination on the subsequent development of certain winter cereals and its relation to the effect of length of day. Ann. Bot. (Lond.) 48, 919–955 (1934).Google Scholar
  830. Resende, F. : Auxin and antiauxin, the hormones responsible for the change of the vegetative into floral phenotypes. Bull. Soc. portug. Sci. nat. 17, 174–188 (1949).Google Scholar
  831. Resende, F. : “Long-short” day plants. Port. Acta biol. 3, 318–322 (1952).Google Scholar
  832. Resende, F. : Plantas de “dia curto-longo”. Bull Soc. portug. nat. 4, 209–213 (1953).Google Scholar
  833. Resende, F. : Gradacao floral e comportamento das PDLC na trans-missao do estado floral entre “donor” e “acceptor” Bryophyllum e Kalanchoë. Port. Acta biol. 4, 272–296 (1955).Google Scholar
  834. Sachs, R. M.: Floral initiation in Oestrum nocturnum. I. A long-short day plant. Plant Physiol. 31, 185–192 (1956).CrossRefPubMedGoogle Scholar
  835. Salisbury, F. B.: The dual role of auxin in flowering. Plant Physiol. 30, 327–334 (1955).CrossRefPubMedGoogle Scholar
  836. Salisbury, F. B.: The mechanisms of action of cobaltous ion, 2,4-dinitrophenol, and auxins in flowering. Plant Physiol. Suppl. 32, X (1957).Google Scholar
  837. Salisbury, F. B.: Influence of certain growth regulators on flowering of the cocklebur. In: Photoperiodism and Related Phenomena in Plants and Animals. Edit, by P. Withrow, p. 381–392. Washington, D.C.: A.A.A.S. Press 1959.Google Scholar
  838. Salisbury, F. B.: Growth regulators and flowering. II. The cobaltous ion. Plant Physiol. 34, 598–604 (1959b).CrossRefPubMedGoogle Scholar
  839. Salisbury, F. B.: Metabolic approaches to flower induction. Proc. IX. Internat. Bot. Congr. 2, 340–341 (1959).Google Scholar
  840. Salisbury, F. B., and J. Bonner: Interaction of light and auxin in flowering. Beitr. Biol. Pflanzen 31, 419–430 (1955).Google Scholar
  841. Salisbury, F. B., and J. Bonner: The reactions of the photoinductive dark period. Plant Physiol. 31, 141–147 (1955).CrossRefGoogle Scholar
  842. Sande Bakhuyzen, H. L. van de: Flowering and flowering hormones (one single scheme for both long-day and short-day plants). III. Proc. Acad. Sci. Amst., Ser. C 56, 164–184 (1953).Google Scholar
  843. Schappelle, N. A.: Effect of narrow ranges of wave-lengths of radiant energy, and other factors, on the reproductive growth of longday and short-day plants. Cornell Univ. Agric. exp. St. Memoir 185 (1936).Google Scholar
  844. Schmitz, J.: Über Beziehungen zwischen Blütenbildung in verschiedenen Licht-Dunkelkombinationen und Atmungsrhythmik bei wechselnden photoperiodischen Bedingungen. Planta (Berl.) 39, 271–308 (1951).CrossRefGoogle Scholar
  845. Schwabe, W. W. : Photoperiodic cycles of lengths differing from 24 hours in relation to endogenous rhythms. Physiol. Plantarum (Cph.) 8, 263–278 (1955).CrossRefGoogle Scholar
  846. Schwabe, W. W.: Recent work on the inhibitory effect of long days on the flowering of some short day plants. Colloque Internat, sur le photo-thermoperiodism, p. 95–109. U.I.S.B. Colloque No 34, Paris 1957.Google Scholar
  847. Schwemmle, B. : Studies of long-day inhibition in short-day plants. J. exp. Bot. 10, 317–328 (1959).CrossRefGoogle Scholar
  848. Schwemmle, B. : Zur Temperturabhängigkeit der Blütenbildung und der endogenen Tagesrhythmik bei Kalanchoë blossfeldiana. Naturwiss. 44, 356 (1957).CrossRefGoogle Scholar
  849. Sen, S. P.: The biochemical aspects of flowering. Bull. bot. Soc. Beng. 5, 87–113 (1951).Google Scholar
  850. Sen, S. P., and A.C. Leopold: Influence of light and darkness upon carbon dioxide fixation. Plant Physiol. 31, 323–328 (1956).CrossRefPubMedGoogle Scholar
  851. Siegelman, H. W., and S.B. Hendricks: Photocontrol of anthocyanin formation in turnip and red cabbage seedlings. Plant Physiol. 32, 393–398 (1957).CrossRefPubMedGoogle Scholar
  852. Silva, M. da, and F. Resende: Kalanchoë rotundifolia (PDLC) florescendo em permanente DC pela accao de auxina (AIA). Revista Biol. 1, 63–67 (1956).Google Scholar
  853. Skok, J., and N. J. Scully: Characteristics and movement of the flowering stimulus from the induces leaf of Xanthiwn. Bot. Gaz. 116, 142–147 (1954).CrossRefGoogle Scholar
  854. Snyder, W. E.: Effect of light and temperature on floral initiation in cocklebur and Biloxi soybean. Bot. Gaz. 102, 302–322 (1940).CrossRefGoogle Scholar
  855. Snyder, W. E.: Mechanism of the photoperiodic response of Plantago lanceolata L., a long-day plant. Amer. J. Bot. 35, 520–525 (1948).CrossRefGoogle Scholar
  856. Spear, I., and K. V. Thimann: The interrelation between CO2 metabolism and photoperiodism in Kalanchoë. II. Effect of prolonged darkness and high temperatures. Plant Physiol. 29, 414–417 (1954).CrossRefPubMedGoogle Scholar
  857. Stolwuk, J. A. J.: Photoperiodic and formative effects of various wavelength regions in Cosmos bipinnatus, Spinacia oleracia, Sinapis alba and Pisum sativum. Proc. Acad. Sci. Amst., Ser. C 55, 489–502 (1952).Google Scholar
  858. Stolwuk, J. A. J.: Wave length dependence of photomorphogenesis in plants. Meded. Landbouwhogesch., Wageningen 54, 181–244 (1954).Google Scholar
  859. Stolwuk, J. A. J., and J. A. D. Zeevaart: Wave length dependence of different light reactions governing flowering in Hyoscyamus niger. Proc. Acad. Sci. Amst., Ser. C 58, 286–396 (1955).Google Scholar
  860. Stout, M.: Translocation of the reproductive stimulus in sugar beets. Bot. Gaz. 107, 86–95 (1945).CrossRefGoogle Scholar
  861. Stroun, M.: Photostade et spectrostade. Physiol. Plantarum (Cph.) 11, 548–563 (1958).CrossRefGoogle Scholar
  862. Takimoto, A. : Flowering response to various combinations of light and dark periods in Silene Armeria. Bot. Mag. (Tokyo) 67, 308–314 (1955).Google Scholar
  863. Takimoto, A., and K. Ikeda: Studies on the light controlling flower initiation of Pharbitis nil. I. Intensity and quality of the light preceding the inductive dark period. Bot. Mag. (Tokyo) 72, 137–145 (1959a).Google Scholar
  864. Takimoto, A., and K. Ikeda: Studies on the light controlling flower initiation in Pharbitis nil. III. Light-sensitivity of the first process on inductive dark period. Bot. Mag. (Tokyo) 72, 388–396 (1959b).Google Scholar
  865. Tashima, Y. : Flower initiation in total darkness in a long day plant, Raphanus sativus L. Proc. imp. Acad. Japan 29, 271–273 (1953).Google Scholar
  866. Tashima, Y., and S. Imamura: Flower initiation in total darkness in Pharbitis Nil Chois., a short day plant. Proc. imp. Acad. Japan 29, 581–585 (1953).Google Scholar
  867. Thurlow, J.: Certain aspects of photoperiodism. Thesis, California Institute of Technology, Pasadena (1948).Google Scholar
  868. Vennesland, B., and E. E. Conn: Carboxylating enzymes in plants. Ann. Rev. Plant Physiol. 3, 307–332 (1952).CrossRefGoogle Scholar
  869. Vlitos, A. J., and W. Meudt: The role of auxin in plant flowering. III. Free indole acids in short-day plants grown under photoinductive and non-photoinductive daylengths. Contr. Boyce Thompson Inst. 17, 413–417 (1954).Google Scholar
  870. Wallrabe, E.: Über die Wirkung von Licht verschiedener Wellenlänge auf die Blütenbildung und die Sukkulenz der Blätter bei der Kurztagpflanze Kalanchoë blossfeldiana. Bot. Arch. 45, 281–316 (1944).Google Scholar
  871. Wareing, P. F.: Experiments on the “light-break” effect in short day plants. Physiol. Plantarum (Cph.) 7, 157–172 (1954).CrossRefGoogle Scholar
  872. Wareing, P. F.: Photoperiodism in woody plants. Ann. Rev. Plant. Physiol. 6, 191–214 (1956).CrossRefGoogle Scholar
  873. Wassink, E. C.: Proc. 2nd Internat. Photobiological Congr. 1957.Google Scholar
  874. Wassink, E. C., C. M. J. Sluysmans and J. A. J. Stolwijk: On some photoperiodic and formative effects of coloured light in Brassica Rapa, F. oleifera, subf. annua. Proc. Acad. Sci. Amst., Ser. C 53, 1466–1475 (1950).Google Scholar
  875. Wassink, E. C., and J. A. J. Stolwijk: Effects of light quality on plant growth. Ann. Rev. Plant Physiol. 7, 373–400 (1956).CrossRefGoogle Scholar
  876. Wassink, E. C., J. A. J. Stolwijk and A. B. R. Beemster: Dependence of formative and photoperiodic reactions in Brassica Rapa var., Cosmos and Lactuca on wavelength and time of irradiation. Proc. Acad. Sci. Amst., Ser. C 54, 421–432 (1951).Google Scholar
  877. Weintratjb, R. L., and E. D. McAlister: Developmental physiology of the grass seedling. I. Inhibition of the mesocotyl of Avena saliva by continuous exposure to light of low intensities. Smithson. Misc. Coll. 101, No. 17 (1942).Google Scholar
  878. Wellensiek, S. J.: Photoperiodical reactions of Perilla crispa. Proc. Acad. Sci. Amst. 61, 552–560 (1958).Google Scholar
  879. Wellensiek, S. J.: The inhibitory action of light on the floral induction of Perilla crispa. Proc. Acad. Sci. Amst. 62, 195–203 (1959).Google Scholar
  880. Withrow, A. P., and R. B. Withrow: Translocation of the floral stimulus in Xanthium. Bot. Gaz. 104, 409–416 (1943).CrossRefGoogle Scholar
  881. Withrow, A. P., R. B. Withrow and J. P. Biebel : Inhibiting influence of the leaves on the photoperiodic response of Nobel spinach. Plant Physiol. 18, 294–298 (1943).CrossRefPubMedGoogle Scholar
  882. Withrow, R. B. (edit.): Photo-periodism and Related Phenomena in Plants and Animals. Washington, D. C., AAAS 1959.Google Scholar
  883. Witsch, H. y. : Über den Zusammenhang zwischen Membranbau, Wuchsstoffwirkung und der Sukkulenzzunahme von Kalanchoë blossfeldiana im Kurztag. Planta (Berl.) 31, 638–653 (1941).CrossRefGoogle Scholar
  884. Wittwer, S. H., and M. J. Bukovac: Gibberellin effects on temperature and photoperiodic requirements for flowering of some plants. Science 126, 30–31 (1957).CrossRefPubMedGoogle Scholar
  885. Zdanova, L. P.: Geotropic reaction of leaves and content of growth hormone in plants. C. R. Acad. Sci. URRS. 49, 62–65 (1945).Google Scholar
  886. Zeeuw, D. de: Flower initiation and light intensity in Perilla. Proc. Acad. Sci. Amst., Ser. C 56, 418–422 (1953).Google Scholar
  887. Zeeuw, D. de: Flowering of Xanthium under long-day conditions. Nature (Lond.) 180, 558 (1957).CrossRefGoogle Scholar
  888. Zeevaart, J. A. D. : Studies on flowering by means of grafting. I. Photoperiodic induction as an irreversible phenomenon in Perilla. Proc. Acad. Sci. Amst., Ser. C 60, 324–331 (1957).Google Scholar
  889. Zeevaart, J. A. D. : Studies on flowering by means of grafting. II. Photoperiodic treatment of detached Perilla and Xanthium leaves. Proc. Acad. Sci. Amst., Ser. C 60, 332–337 (1957).Google Scholar
  890. Zeevaart, J. A. D. : Studies on flowering by means of grafting. III. Translocation of the floral stimulus through a day-neutral inter-stock. Proc. Acad. Sci. Amst., Ser. C 60, 523–530 (1957).Google Scholar
  891. Aach, H. G.: Über einige Ähnlichkeiten der Lichtwirkung auf grüne Pflanzen und auf das tierische Auge. Z. Naturforsch. 9b, 481–487 (1954).Google Scholar
  892. Abel, B.: Über die Beeinflussung der Chloroplastenstruktur durch Licht bei Antirrhinum majus (haploid). Naturwiss.43, 136–137 (1956).CrossRefGoogle Scholar
  893. Åberg, B.: Physiologische und ökologische Studien über die pflanzliche Photomorphose. Symb. bot. upsal. 8, 5–189 (1943–1946).Google Scholar
  894. Appleman, D.: Catalase-chlorophyll relationship in barley seedlings. Plant Physiol 27, 612–621 (1952).CrossRefGoogle Scholar
  895. Appleman, D., and H. T. Pyfrom: Changes in catalase activity and other responses induced in plants by red and blue light. Plant Physiol. 30, 543–549 (1955).CrossRefPubMedGoogle Scholar
  896. Arisz, W. H.: Untersuchungen über den Phototropismus. Rec. Trav. bot. néerl. 12, 44–216 (1915).Google Scholar
  897. Arisz, W. H.: Uptake and transport of chlorine by parenchymatic tissue of leaves of Vallisneria spiralis. I. The active uptake of chlorine. Proc. kon. ned. Akad. Wet. 50, 1019–1032 (1947a).Google Scholar
  898. Arisz, W. H.: Uptake and transport of chlorine by parenchymatic tissue of leaves of Vallisneria spiralis. II. Analysis of the transport of chlorine. Proc. kon. ned. Akad. Wet. 50, 1235–1245 (1947 b).Google Scholar
  899. Arisz, W. H.Uptake and transport of chlorine by parenchymatic tissue of leaves of Vallisneria spiralis. III. Discussion of the transport and uptake. Vacuole secretion theory. Proc. kon. ned. Akad. Wet. 51, 25–36 (1948).Google Scholar
  900. Arnold, W., and J. R. Oppenheimer: Internal conversion in the photosynthetic mechanism of blue-green algae. J. gen. Physiol. 33, 423–435 (1950).CrossRefPubMedGoogle Scholar
  901. Arthur, J. M.: Red pigment production in apples by means of artificial light sources. Contr. Boyce Thompson Inst. 4, 1–18 (1932).Google Scholar
  902. Arthur, J. M. Radiation and anthocyanin pigments. In: Biological Effects of Radiation, edit. B. M. Duggar. New York: McGraw Hill Book Co. 1936.Google Scholar
  903. Asomaning, E. J. A., and A. W. Galston: The effects of pre-irradiation with red and blue light on pigment content and phototropic sensitivities of oat and barley coleoptiles. Proc. IX. Intern. Bot. Congr., vol. II, p. 10–11. Montreal 1959.Google Scholar
  904. Asthana, R. P., and L. E. Hawker: The influence of certain fungi on the sporulation of Melanospora destruens Shear, and of some other ascomycetes. Ann. Botany 50, 325–343 (1936).Google Scholar
  905. Atkins, G. A.: The effect of pigment on phototropic response: A comparative study of reactions to monochromatic light. Ann. Botany 50, 197–218 (1936).Google Scholar
  906. Avery, G. S., P. R. Burkholder and H. B. Creighton: Polarized growth and cell studies in the first internode and coleoptile of Avena in relation to light and darkness. Bot. Gaz. 99, 125–143 (1937).CrossRefGoogle Scholar
  907. Babuskin, L. N.: Das Aktionsspektrum der Chloroplasten-Phototaxis. Dokl. Akad. Nauk. SSSR. 103, 333–335 (1955). [Russisch.].Google Scholar
  908. Bachmann, F., u. F. Bergann: Über die Wertigkeit von Strahlen verschiedener Wellenlänge für die phototropische Reizung von Avena sativa. Planta (Berl.) 10, 744–755 (1930).CrossRefGoogle Scholar
  909. Backus, G. E., and A. R. Schrank: Electrical and curvature responses of the Avena coleoptile to unilateral illumination. Plant Physiol. 27, 251–262 (1952).CrossRefPubMedGoogle Scholar
  910. Ball, N. G.: The effects of certain growth regulating substances on the rhizomes of Aegopodium podagraria. J. exp. Bot. 4, 349–362 (1953).CrossRefGoogle Scholar
  911. Banbury, G. H.: Physiological studies in the Mucorales. I. The phototropism of sporangio-phores of Phycomyces blakesleeanus. J. exp. Bot. 3, 77–85 (1952a).CrossRefGoogle Scholar
  912. Banbury, G. H. Physiological studies in the Mucorales. II. Some observations on growth regulation in the sporangiophore of Phycomyces. J. exp. Bot. 3, 86–94 (1952b).CrossRefGoogle Scholar
  913. Banbury, G. H., and M. J. Carlile: Phototropism of Phycomyces sporangiophores. Nature (Lond.) 181, 358–359 (1958).CrossRefGoogle Scholar
  914. Bandurski, R. S.: Synthesis of carotenoid pigments in detached bean leaves. Bot. Gaz. 111, 95–109 (1949).CrossRefGoogle Scholar
  915. Barnett, H. L., and V. G. Lilly: Influence of nutritional and environmental factors upon asexual reproduction of Choanephora cucurbitarum in culture. Phytopathology 40, 80–89 (1950).Google Scholar
  916. Bauer, A.: Beiträge zur Pigmentphysiologie der Blätter von Aurea-Varietäten. Beitr. Biol. Pflanz. 32, 403–426 (1956).Google Scholar
  917. Bawden, F. C., and A. Kleczkowskh Ultraviolet injury to higher plants counteracted by visible light. Nature (Lond.) 169, 90–91 (1952).CrossRefGoogle Scholar
  918. Bawden, F. C., and A. Kleczkowskh Studies on the ability of light to counteract the inactivating action of ultraviolet radiation on plant viruses. J. gen. Microbiol. 13, 370–382 (1955).CrossRefPubMedGoogle Scholar
  919. Bawden, F. C., and A. Kleczkowskh Photoreactivation of nucleic acid from tobacco mosaic virus. Nature (Lond.) 183, 503–504 (1959).CrossRefGoogle Scholar
  920. Beecher, F. S.: Light and composition of media as factors inducing sporulation in strains of Altemaria solani. Phytopathology 35, 483 (1945).Google Scholar
  921. Bega, R. V.: The effect of environment on germination of sporidia in Cronartium ribicola. Phytopathology 50, 61–69 (1960).Google Scholar
  922. Beikirch, H.: Die Abhängigkeit der Protoplasmaströmung von Licht und Temperatur und ihre Bedingtheit durch andere Faktoren. Bot. Archiv 12, 389–445 (1925).Google Scholar
  923. Bell, G. R.: On the photochemical degradation of 2,4-Dichlorophenoxyacetic acid and structurally related compounds in the presence and absence of riboflavin. Bot. Gaz. 118, 133–136 (1956).CrossRefGoogle Scholar
  924. Bellamy, W. D., and M. T. Germain: An attempt to photoreactivate ultraviolet inactivated streptococci. J. Bact. 70, 351–352 (1955).PubMedGoogle Scholar
  925. Bergann, F.: Untersuchungen über Lichtwachstum, Lichtkrümmung und Lichtabfall bei Avena sativa mit Hilfe monochromatischen Lichtes. Planta (Berl.) 10, 666–743 (1930).CrossRefGoogle Scholar
  926. Bernheim, F., and M. Dixon: Studies on xanthine oxidase. X. The action of light. Biochem. J. 22, 113–124 (1928).PubMedGoogle Scholar
  927. Bessey, E. A.: Über die Bedingungen der Farbbildung bei Fusarium. Flora (Jena) 93, 301–334 (1904).Google Scholar
  928. Bever, W. M.: Effect of light on the development of uredial stage of Puccinia glumarum. Phytopathology 24, 507–516 (1934).Google Scholar
  929. Beyer, A.: Über die Lichtwachstumsreaktion apophoto-tropischer Avena-Koleoptilen. Planta (Berl.) 2, 367–372 (1926).CrossRefGoogle Scholar
  930. Beyer, A. Experimentelle Studien zur Blaauwschen Theorie. I. Planta (Berl.) 4, 411–436 (1927). II. Planta (Berl.) 5, 478–519 (1928).CrossRefGoogle Scholar
  931. Bisby, G. R.: Zonation in cultures of Fusarium discolor sulphureum. Mycologia 17, 89–97 (1925).CrossRefGoogle Scholar
  932. Björn, L. O., and H. I. Virgin: The influence of red light on the growth of pea seedlings. An attempt to localize the perception. Physiol. Plantarum (Cph.) 11, 363–373 (1958).CrossRefGoogle Scholar
  933. Björnsson, I. P.: Effects of light on Stemphylium, Trichoderma, Botrytis, and certain other fungi. Doctoral Diss., University of Maryland, 1956.Google Scholar
  934. Blaauw, A. H.: Die Perzeption des Lichtes. Rec. Trav. bot. néerl. 5, 209–372 (1909).Google Scholar
  935. Blaauw, A. H. Licht und Wachstum. I. Z. Bot. 6, 641–703 (1914).Google Scholar
  936. Blaauw, A. H. II. Z. Bot. 7, 465–532 (1915).Google Scholar
  937. Blaauw, A. H. III. Meded. Landbouwhoogeschool Wageningen 15, 89–204 (1918).Google Scholar
  938. Blaauw-Jansen, G.: The influence of red and far-red light on growth and phototropism of the Avena seedling. Acta bot. neerl. 8, 1–39 (1959).Google Scholar
  939. Blaauw-Jansen, G., J. G. Komen and J. B. Thomas: On the relation between the formation of assimilatory pigments and the rate of photosynthesis in etiolated oat seedlings. Biochim. biophys. Acta 5, 179–185 (1950).CrossRefPubMedGoogle Scholar
  940. Black, M., and P. F. Wareing: Sensitivity of light-inhibited seeds to certain spectra] regions. Nature (Lond.) 180, 395 (1957).CrossRefGoogle Scholar
  941. Black, M., and P. F. Wareing The inhibition of germination of seeds by radiation. Proc. IX. Internat. Bot. Congr., vol. II A, p. 2–3. Montreal 1959.Google Scholar
  942. Blackwell, E., and G. M. Waterhouse: Spores and spore germination in the genus Phytophtora. Trans. brit. mycol. Soc. 25, 294–321 (1931).CrossRefGoogle Scholar
  943. Blank, F.: The anthocyanin pigments of plants. Bot. Rev. 13, 241–317 (1947).CrossRefGoogle Scholar
  944. Bloch, R.: Polarity in plants. Bot. Rev. 9, 261–310 (1943).CrossRefGoogle Scholar
  945. Blum, H. F.: Photodynamic action and diseases caused by light. New York: Reinhold Publishing Corporation 1941.Google Scholar
  946. Blum, H. F., G. M. Loos, J. P. Price and J. C. Robinson: Enhancement by “visible” light of recovery from ultraviolet irradiation in animal cells. Nature (Lond.) 164, 1011 (1949).CrossRefGoogle Scholar
  947. Blum, H. F., G. M. Loos and J. C. Robinson: The accelerating action of illumination in recovery of Arbacia eggs from exposure to ultraviolet radiation. J. gen. Physiol. 34, 167–181 (1950).CrossRefPubMedGoogle Scholar
  948. Blum, H. F., and M. R. Matthews: Photorecovery from the effects of ultraviolet radiation in salamander larvae. J. cell. comp. Physiol. 39, 57–72 (1952).CrossRefGoogle Scholar
  949. Bonar, L.: Studies on the biology of Brachysporium trifolii. Amer. J. Bot. 11, 123–158 (1924).CrossRefGoogle Scholar
  950. Bonner, J., and J. Liverman: Hormonal control of flower initiation. In: Growth and Differentiation in Plants, edit. W. E. Loomis. Ames: Iowa State College Press 1953.Google Scholar
  951. Borris, H.: Beiträge zur Wachstums- und Entwicklungsphysiologie der Fruchtkörper von Coprinus lagopus. Planta (Berl.) 22, 28–69 (1934a).CrossRefGoogle Scholar
  952. Borris, H. Über den Einfluß äußerer Faktoren auf Wachstum und Entwicklung der Fruchtkörper von Coprinus lagopus. Planta (Berl.) 22, 644–684 (1934b).CrossRefGoogle Scholar
  953. Borthwick, H. A., S. B. Hendricks and M. W. Parker: Action spectrum for inhibition of stem growth in darkgrown seedlings of albino and nonalbino barley (Hordeum vulgare). Bot. Gaz. 113, 95–105 (1951).CrossRefGoogle Scholar
  954. Borthwick, H. A., S. B. Hendricks, M. W. Parker, E. H. Toole and V. K. Toole: A reversible photoreaction controlling seed germination. Proc. nat. Acad. Sci. (Wash.) 38, 662–666 (1952).CrossRefGoogle Scholar
  955. Borthwick, H. A., S. B. Hendricks, E. H. Toole and V. K. Toole: Action of light on lettuce seed germination. Bot. Gaz. 115, 205–225 (1954).CrossRefGoogle Scholar
  956. Bottelier, H. P.: Über den Einfluß des Lichts auf die Protoplasmaströmung von Avena. Proc. kon. ned. Akad. Wet. 36, 790–794 (1933).Google Scholar
  957. Bottelier, H. P. Über den Einfluß äußerer Faktoren auf die Protoplasmaströmung in der Avena-Koleoptile. Rec. Trav. bot. néerl. 31, 474–582 (1934).Google Scholar
  958. Boysen Jensen, P.: Die phototropische Induktion in der Spitze der Avena-Koleoptile. Planta (Berl.) 5, 464–477 (1928).CrossRefGoogle Scholar
  959. Boysen Jensen, P. Über die durch einseitige Lichtwirkung hervorgerufene transversale Leitung des Wuchsstoffes in der Avena-Koleoptile. Planta (Berl.) 19, 335–344 (1933).CrossRefGoogle Scholar
  960. Brackett, F. S., and E. S. Johnston: New researches on the effect of light waves on the growth of plants. Smithsonian Report 1930, p. 255–264.Google Scholar
  961. Brancato, F. P., and N. S. Golding: The diameter of the mold colony as a reliable measure of growth. Mycology 45, 848–864 (1953).Google Scholar
  962. Brandt, C. L., and A. C. Giese: Photoreversal of nuclear and cytoplasmic effects of short ultraviolet radiation on Paramaecium caudatum. J. gen. Physiol. 39, 735–752 (1956).CrossRefPubMedGoogle Scholar
  963. Brandt, W. H.: Zonation in a prolineless strain of Neurospora. Mycologia 45, 194–208 (1953).Google Scholar
  964. Brauner, L.: Lichtkrümmung und Lichtwachstumsreaktion. Z. Bot. 14, 497–547 (1922).Google Scholar
  965. Brauner, L. Die Blaauwsche Theorie des Phototropismus. Ergebn. Biol. 2, 95–115 (1927).Google Scholar
  966. Brauner, L. Untersuchungen über die phototropischen Reaktionen des Primärblattgelenks von Phaseolus multiflorus in weißem und in farbigem Licht. Rev. Fac. Sci. Univ. Istanbul, Ser. B 13, 211–267 (1948).Google Scholar
  967. Brauner, L. Induktion phototropischer Reaktionen durch ein künstliches Perzeptionsorgan. Experientia (Basel) 8, 102–103 (1952a).