Advertisement

Second-order Statistical Analysis of Directions

  • Eduard Batschelet
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

If circular samples of equal size are reduced to their respective mean vectors, a sample of mean vectors is formed. This sample is referred to as a second-order sample. Kolmogorov’s test of goodness of fit may be used as a test for concentration. Since second-order samples are essentially bivariate, Hotelling’s T2 test (in case of normality) or a nonparametric competitor may be applied. Here a linear-circular correlation technique is recommended. Also studied is the comparison of two independent second-order samples.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arendse, M.C., Vrins, J.C.M.: Magnetic orientation and its relation to photic orientation in Tenebvio Molitor L. Netherl. J. Zool. 25, 407–437 (1975)CrossRefGoogle Scholar
  2. Batschelet, E.: Statistical Methods for the Analysis of Problems in Animal Orientation and Certain Biological Rhythms. Washington, D.C.: Am. Inst. Biol. Sci., 1965Google Scholar
  3. Batschelet, E.: Recent statistical methods for orientation data. In: Animal Orientation and Navigation. Galler, S.R.et al. (eds.). NASA-Symposium. Washington, D.C.: U.S. Government Printing Office, 1972Google Scholar
  4. Conover, W.J.: Practical Nonparametric Statistics. New York and London: Wiley, 1971Google Scholar
  5. Ercolini, A., Scapini, F.: Fototassia negativa e orientamento astronomico solare in due specie di stafilinidi ripari. Redia 59, 135–153 (1976)Google Scholar
  6. Fiore, L., Ioalé, P.: A method for studying orientation in pigeons by operant conditioning. Rev. Comp. Animal 7, 275–278 (1973)Google Scholar
  7. Greenwood, J.A., Durand, D.: The distribution of length and components of the sum of n random unit vectors. Ann. Math. Stat, 26, 233–246 (1955)CrossRefGoogle Scholar
  8. Halberg, F., Tong, Y.L., Johnson, E.A.: Circadian system phase — An aspect of temporal morphology. In: Cellular Aspects of Biorhythms. Symposium on Rhythmic Research in Wiesbaden. Berlin — Heidelberg — New York: Springer, 1965Google Scholar
  9. Hald, A.: Statistical Theory with Engineering Applications. New York: Wiley, 1952Google Scholar
  10. Heiligenberg, W.: Electrolocation and jamming avoidance in a Hypopygus (Rhamphichthyidae, Gymnotoidei), an electric fish with pulse-type discharges. J. Comp. Physiol. 91, 223–240 (1974)CrossRefGoogle Scholar
  11. Herrnkind, W.F., McLean, R.: Field studies of homing, mass emigration, and orientation in the spiny lobster, Panulirus Argus. Ann. New York Acad. Sci. 188, 359–377 (1971)CrossRefGoogle Scholar
  12. Hotelling, H.: The generalization of Student’s ratio. Ann. Math. Stat. 2, 360–378 (1931)CrossRefGoogle Scholar
  13. Mardia, K.V.: A nonparametric test for the bivariate two-sample location problem. J. R. Stat. Soc, Ser. B. 29, 320–342 (1967)Google Scholar
  14. Mardia, K.V.: Statistics of Directional Data. London — New York: Academic Press, 1972Google Scholar
  15. Mardia, K.V.: Linear-circular correlation coefficients and rhythmometry. Biometrika 63, 403–405 (1976)CrossRefGoogle Scholar
  16. Wallraff, H.G.: Über die Flugrichtungen verfrachteter Brieftauben in Abhängigkeit vom Heimatort und vom Ort der Freilassung. Z. Tierpsychol. 27, 303–351 (1970)Google Scholar
  17. Zar, J.H.: Biostatistical Analysis. Englewood Cliffs, N.J.: Prentice-Hall, 1974Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • Eduard Batschelet
    • 1
  1. 1.Mathematisches InstitutUniversität ZürichZürichSwitzerland

Personalised recommendations