Advertisement

Pathophysiologie

  • F. G. Holz
  • D. Pauleikhoff
  • A. C. Bird
Chapter

Zusammenfassung

Im menschlichen Auge finden sich mit dem Alter vielfältige degenerative Veränderungen. Einige dieser strukturellen und funktionellen Veränderungen sowie physikalische und diätetische Einflüsse wurden als mögliche pathophysiologische Faktoren bei der Entstehung der altersabhängigen Makuladegeneration diskutiert. Obgleich sich viele der Veränderungen in nahezu jedem alternden Auge finden, entwickelt dennoch nur ein Teil der betroffenen Altersgruppe visusvermindernde Läsionen. Daher spielen offensichtlich andere individuelle Faktoren wie eine genetische Prädisposition oder spezifische Umwelteinflüsse eine Rolle.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bellmann C, Holz FG, Otto TP, Wicker HE (1996) Topographie der Fundus-Autofluoreszenz mit einem konfokalen Laser-Scanning-Ophthalmoskop. Ophthalmologe 93: 71Google Scholar
  2. Boulton M, Marshall J (1986) Effects of increasing numbers of phagocytic inclusions on human retinal pigment epithelial cells in culture: a model for aging. Br J Opthalmol 70: 808CrossRefGoogle Scholar
  3. Boulton ME, MCKechnie NM, Breda J, Bayly M, Marshall J (1989) The formation of auto-fluorescent granules in cultured human RPE. Invest Ophthalmol Vis Sci 30: 83Google Scholar
  4. Boulton ME (1991) Ageing of the retinal pigment epithelium. In: Osborn NN, Chader GJ (eds.) Retinal Research. Pergamon Press, Oxford, pp 126Google Scholar
  5. Brunk U, Collins VP (1981) Lysosomes and age pigments in cultured cells. In: Sohal RS (ed) Age pigments. Elsevier/North-Holland Biomedical Press, pp 243Google Scholar
  6. Burns RP, Feeney-Burns L (1980) Clinicomorphologic correlations of Drusen of Bruch’s membrane. Trans Am Ophthalmol Soc 78: 206PubMedGoogle Scholar
  7. Casswell AG, Kohen D, Bird AC (1985) Retinal pigment epithelial detachments in the elderly: classification and outcome. Br J Ophthalmol 69: 397PubMedCrossRefGoogle Scholar
  8. Delori CD, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ (1995) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci 36: 718PubMedGoogle Scholar
  9. Delori CD, Staurenghi G, Arend O, Dorey CK, Goger DG, Weiter JJ (1995) In vivo measurement of lipofuscin in Stargardt’s disease - fundus flavimaculaturs. Invest Ophthalmol Vis Sci 36: 718PubMedGoogle Scholar
  10. Dorey CK, Wu G, Ebenstein D, Garsd A, Weiter JJ (1989) Cell loss in the aging retina: relationship of lipofuscin accumulation and macular degeneration Invest Ophthalmol Vis Sci 30a051Google Scholar
  11. Dorey CK, Staurenghi G, Delori FC (1993) Lipofuscin in aged and ARMD eyes. In: Holly-field JG et al. (eds) Retinal Degeneration. New York: Plenum Press, pp 3CrossRefGoogle Scholar
  12. Eagle RC Jr (1984) Mechanisms of maculopathy. Ophthalmology 91: 613PubMedGoogle Scholar
  13. Eldred CE, Laskey MR (1993) Retinal age pigments generated by self-absorbing lysosomotropic detergents. Nature 361: 724PubMedCrossRefGoogle Scholar
  14. Feeney L (1978) Lipofuscin and melanin of human retinal pigment eipthelium. Invest Ophthalmol Vis Sci 17: 583PubMedGoogle Scholar
  15. Feeney-Burns L, Berman ER, Rothman H (1980) Lipofuscin of human retinal pigment epithelium. Am J Ophthalmol 90: 783PubMedGoogle Scholar
  16. Feeney-Burns L, Hilderbrand ES, Eldridge S (1984) Aging human RPE: morphometric analy-sis of macular, equatorial and peripheral cells. Invest Ophthalmol Vis Sci 25: 195PubMedGoogle Scholar
  17. Feeney-Burns L, Ellersieck MR (1985) Age-related changes in the ultrastructure of Bruch’s membrane. Am J Ophthalmol 100: 686PubMedGoogle Scholar
  18. Fisher RF (1987) The influence of age on some ocular basement membranes. Eye 1: 184PubMedCrossRefGoogle Scholar
  19. Flood M, Gouras P, Kjeldbye H (1980) Growth characteristics and ultrastructure of human retinal pigment epithelium in vitro. Invest Ophthalmol Vis Sci 19: 1309PubMedGoogle Scholar
  20. Hayes KC (1974) Retinal degeneration in monkeys induced by deficiencies of vitamin E or A. Invest Ophthalmol 13: 499Google Scholar
  21. Hinsull SM, Bellamy D (1981) Tissue homeostasis and cell death. In: Bowen ID, Lockshin RA (eds) Cell biology in biology and pathology. Chapman and Hall, London, pp 123CrossRefGoogle Scholar
  22. Holz FG, Dorey CK, Sheraidah G, Bird AC (1994a) Lipofuscin fluorescence, Bruch’s membrane fluorescence and lipid deposits in aging donor eyes. Invest Ophthalmol Vis Sci 35: 1501Google Scholar
  23. Holz FG, Sheraidah G, Pauleikhoff D, Bird AC (1994 b) Analysis of lipid deposits extracted from human macular and peripheral Bruch’s membrane. Arch Ophthalmol 112: 402Google Scholar
  24. Holz FG, Owens S, Marks J, Haimovici R, Bird AC. Ultrastructural findings in autosomal-dominant drusen. Arch Ophthalmol (im Druck)Google Scholar
  25. Hopkins J, v Rückmann A, Fitzke FW, Bird AC (1996) Fundus autofluorescence in age-related macular disease. Invest Ophthalmol Vic Sci 37: S114Google Scholar
  26. Ishibashi T, Sorgente N, Patterson R, Ryan SJ (1986) Pathogenesis of drusen in the primate. Invest Ophthalmol Vis Sci 27: 184PubMedGoogle Scholar
  27. Kliffen M, de Jong PTVM, Luider TM (1995) Protein analysis of human maculae in relationship to age-related maculopathy. Lab Invest 73: 267PubMedGoogle Scholar
  28. Mann DM, Yates PO (1974) Lipofuscin pigments: their relationship to ageing in the human nervous system. I. The lipofuscin content of nerve cells. Brain 97: 481Google Scholar
  29. Mann DM, Yates PO, Stamp JE (1978) The relationship between lipofuscin pigment and ageing in the human nervous system. J Neurol Sci 37: 83PubMedCrossRefGoogle Scholar
  30. Moore DJ, Hussain AA, Marshall J (1995) Age-related variation in the hydraulic conductivity of Bruch’s Membrane. Invest Ophthalmol Vis Sci 36: 1290PubMedGoogle Scholar
  31. Olver J, Pauleikhoff D, Bird AC (1990) Morphometric analysis of age changes in the chorioicapillaris. Invest Ophthalmol Vis Sci (Suppl.) 31: 47Google Scholar
  32. Organisciak DT, Wang H, Li ZY, Tso MOM (1985) The protective effect of ascorbate in retinal light damage of rats. Invest Ophthalmol Vis Sci 26: 1580PubMedGoogle Scholar
  33. Pauleikhoff D, Harper CA, Marshall J, Bird AC (1990) Aging changes in Bruch’s membrane. A histochemical and morphologic study. Ophthalmology 97: 171Google Scholar
  34. Pauleikhoff D, Zuels S, Sheraidah G, Bird AC (1992) Correlation between biochemical composition and fluorescein binding of deposits in Bruch’s membrane. Ophthalmology 99: 1548PubMedGoogle Scholar
  35. Penfold PL, Killingsworth M, Sarks S (1985) Senile macular degeneration: The involvement of immunocompetent cells. Graefes Arch Clin Exp Ophthalmol 223: 69Google Scholar
  36. Ramratten RS, van der Schaft TL, Mooy CM, Bruijn WC, Mulder PGH, de Jong PTVM (1994) Morphometric analysis of Bruch’s membrane, the choriocapillaris and the choroid in aging. Invest Ophthalmol Vis Sci 35: 2857Google Scholar
  37. Rückmann A v, Fitzke FW, Bird AC (1995) Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol 79: 407PubMedCrossRefGoogle Scholar
  38. Sheraidah G, Steinmetz R, Maguire J, Pauleikhoff D, Marshall J, Bird AC (1993) Correlation between lipids extracted from Bruch’s membrane and age. Ophthalmology l00: 47Google Scholar
  39. Wing GL, Gordon CB, Weiter JJ (1978) The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 17: 601PubMedGoogle Scholar
  40. Young RW (1987) Pathophysiology of age-related macaular degeneration. Sury Ophthalmol 31: 291CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • F. G. Holz
  • D. Pauleikhoff
  • A. C. Bird

There are no affiliations available

Personalised recommendations