Skip to main content

Does Noradrenaline Influence the Extracellular Accumulation of Potassium, Sodium, Calcium, and Hydrogen Ions ([K+]e, [Na+]e, [Ca2+]e, [H+]e) during Global Ischemia in Isolated Rat Hearts?

  • Conference paper
Adrenergic Mechanisms in Myocardial Ischemia

Summary

The influence of noradrenaline (NA) on net cation fluxes during global ischemia (gI) was investigated in isolated rat hearts. The hearts were perfused according to the Langendorff technique and left ventricular pressure (LVP), the first derivative of the LVP (dP/dtmax, dP/dtmin), coronary perfusion pressure (CPP), and heart rate (HF) were measured. In the control group, the perfusion medium was either Krebs-Henseleit’s solution (KHS), or KHS and tetramethylammonium-chloride (TMA; 100μM). In this study TMA was used as a marker to determine changes in the extracellular space (ECS) size during gI. The hearts were subjected to 40 min of gI. Changes in the size of the ECS, and net cation movements were calculated during the first 20 min of gI. In treated hearts, NA (50 nM) was added to the perfusate 15 min before the onset of gI. Extracellular concentrations of K+, Na+, Ca2+, H+, and TMA were measured using double-barreled polyvinyl-chloride (PVC) mini-electrodes. Relative changes in the ECS size and net cation movements were calculated from the extracellular TMA and cation concentrations.

In separate experiments, the hemodynamics and lactate overflow of treated hearts were compared with control hearts prior to and following a brief period (1 min) of gI.

Addition of NA to the perfusate significantly:

  1. 1)

    increased CPP, LVP, dP/dtmax, dP/dtmin, and HF prior to the onset of gI, and increased cell swelling during gI;

  2. 2)

    diminished K+-release from the cells, but significantly increased the influx of sodium and calcium into the intracellular space (ICS);

  3. 3)

    increased lactate overflow prior to and following 1 min of gI.

We assume that catecholamines increase ECS shrinkage before and during gI, probably by increased lactate production. NA stimulates the Na+/K+ pump, thereby reducing [K+ ]e accumulation. The increased [Ca2+ ]i and intracellular acidification promote sodium entry into the cells during gI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardenheuer H, Schrader J (1983) Relationship between myocardial oxygen consumption, coronary flow, and adenosine release in an improved isolated working heart preparation of guinea pig. Circ Res 51, 263–271

    Article  Google Scholar 

  2. Bersohn MM, Philipson KD, Fukushima JY (1982) Sodium-calcium exchange and sarcolemmal enzymes in ischemic rabbit hearts. Am J Physiol 242, C288–C295

    PubMed  CAS  Google Scholar 

  3. Bös L, Franz Chr, Hirche Hj (1978) Cardiac arrhythmia and increase of local myocardial extracellular K+ activity in pigs. J Physiol 284: 88 P (abstr.)

    Google Scholar 

  4. Corr PB, Yamada KA, Witkowski FX (1986) Mechanisms controlling cardiac autonomic function and their relation to arrhythmogenesis. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (Eds.) The Heart and Cardiovascular System. Raven Press, New York, pp 1343–1403

    Google Scholar 

  5. Deitmer JW, Ellis DW (1980) Interactions between the regulation of the intracellular pH and sodium activity of sheep cardiac Purkinje fibers. J Physiol 304, 471–488

    PubMed  CAS  Google Scholar 

  6. Désilets M, Baumgarten CM (1986) K+, Na+, and Cl activities in ventricular myocytes from rabbit heart. Am J Physiol 251, C197–C208

    PubMed  Google Scholar 

  7. Dietzel I, Heinemann U, Hofmeier G, Lux HD (1980) Transient changes in the size of the extracellular space in the sensorimotor cortex of cats in relation to stimulus induced changes in potassium concentration. Exp Brain Res 40, 432–439

    Article  PubMed  CAS  Google Scholar 

  8. Döhring HJ, Dehnert H (1985) Das isolierte perfundierte Warmblüter-Herz nach Langendorff. In: Methoden der experimentellen Physiologie und Pharmakologie. Biomesstechnik (5), Biomesstechnik Verlag March GmbH, March

    Google Scholar 

  9. Fabiato A, Fabiato F (1977) Calcium release from the sarcoplasmic reticulum. Circ Res 40, 119–129

    Article  PubMed  CAS  Google Scholar 

  10. Fiolet JWT, Baartscheer A, Schumacher CA, Coronel R, ter Welle HF (1984) The change of the free energy of ATP hydrolysis during global ischemia and anoxia in the rat heart. Its possible role in the regulation of the transsarcolemmal sodium and potassium gradients. J Mol Cell Cardiol 16, 1023–1026

    Article  PubMed  CAS  Google Scholar 

  11. Freiin C, Vigne P, Lazdunski M (1984) The role of the Na+/H+ exchange system in cardiac cells in relation to the control of the internal Na+ concentration. J Biol Chem 259, 8880–8885

    Google Scholar 

  12. Friedrich M, Benndorf K, Schwalb M, Hirche Hj (1990) Effects of anoxia on K+ and Ca2+ currents in isolated guinea pig cardiocytes. Pflügers Arch 416, 207–209

    Article  PubMed  CAS  Google Scholar 

  13. Gadsby DC, Kimura J, Noma A (1985) Voltage dependence of Na/K pump current in isolated heart cells. Nature 315, 63–65

    Article  PubMed  CAS  Google Scholar 

  14. Hill JL, Gettes LS, Lynch MR, Hebert NC (1978) Flexible valinomycin electrodes for on-line determination of intravascular and myocardial K+. Am J Physiol 235, H455–H459

    PubMed  CAS  Google Scholar 

  15. Hill JL, Gettes LS (1980) Effect of acute coronary artery occlusion on local myocardial extracellular K+ activity in swine. Circulation 61, 768–778

    Article  PubMed  CAS  Google Scholar 

  16. Hirche Hj, Franz Chr, Bös L, Bissig R, Lang R, Schramm M (1980) Myocardial extracellular K+ and H+ increase and noradrenaline increase as possible cause of early arrhythmias following acute coronary artery occlusion in pigs. J Mol Cell Cardiol 12, 579–593

    Article  PubMed  CAS  Google Scholar 

  17. Isenberg G (1977) Cardiac Purkinje fibers [Ca2+]i controls the potassium permeability via the conductance components gk1 and gk2. Pflügers Arch 371, 77–85

    Article  PubMed  CAS  Google Scholar 

  18. Jennings RB, Reimer KA, Hill ML, Mayer SE (1981) Total ischemia in dog hearts in vitro. 1. Comparison of high energy phosphate production, utilization and depletion and of adenosine nucleotide catabolism in total ischemia in vitro vs. severe ischemia in vivo. Circ Res 49, 892–900

    Article  PubMed  CAS  Google Scholar 

  19. Jennings RB, Reimer KA, Steenbergen C (1986) Myocardial ischemia revisited. The osmolar load, membrane damage, and reperfusion. J Mol Cell Cardiol 18, 769–780

    Article  PubMed  CAS  Google Scholar 

  20. Kléber AG (1983) Resting membrane potential, extracellular potassium activity and intracellular sodium activity during acute global ischemia in the isolated guinea pig heart. Circ Res 52, 442–450

    Article  PubMed  Google Scholar 

  21. Kléber AG (1984) Extracellular potassium accumulation in acute myocardial ischemia. J Mol Cell Cardiol 16, 389–394

    Article  PubMed  Google Scholar 

  22. Knopf H, McDonald FM, Bischoff A, Hirche Hj, Addicks K (1988a) Effect of Propranolol on early postischemic arrhythmias and noradrenaline and potassium release of ischemic myocardium in anaesthetized pigs. J Cardiovasc Pharmacol 12(suppl. 1): S41–S47

    Article  PubMed  CAS  Google Scholar 

  23. Knopf H, Theising R, Hirche Hj (1988b) The effect of desipramine on ischemia-induced changes in extracellular K+, Na+, and H+ concentrations and noradrenaline release in the isolated rat heart during global ischemia. J Cardiovasc Pharmacol 12, 8–14

    Article  Google Scholar 

  24. Knopf H, Theising R, Moon CH, Hirche Hj (1990) Continuous determination of extracellular space (ECS) and net flux rates of K+, Na+, Ca2+, and H+ during global ischemia (GI) in isolated rat hearts. J Mol Cell Cardiol (in press)

    Google Scholar 

  25. Lazdunski M, Freiin C, Vigne P (1985) The sodium/hydrogen exchange system in cardiac cells: its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J Mol Cell Cardiol 17, 1029–1042

    Article  PubMed  CAS  Google Scholar 

  26. Lee CO, Vasalle M (1983) Modulation of intracellular Na+ activity and cardiac force by norepinephrine and Ca2+. Am J Physiol 244, C110–C114

    PubMed  CAS  Google Scholar 

  27. Lee HC, Mohabir R, Smith N, Franz MR, Clusin WT (1988) Effect of ischemia on Ca-dependent fluorescence transients in rabbit hearts containing Indo 1. Circulation 78, 1047–1059

    Article  PubMed  CAS  Google Scholar 

  28. Lehninger AL (1970) Mitochondria and calcium ion transport. Biochem J 119, 129–138

    PubMed  CAS  Google Scholar 

  29. McDonald FM, Knopf H, Hartono S, Polwin W, Bischoff A, Hirche Hj, Addicks K (1986) Acute myocardial ischaemia in the anaesthetised pig: local catecholamine release and its relation to ventricular fibrillation. Basic Res Cardiol 81, 636–645

    Article  PubMed  CAS  Google Scholar 

  30. Murphy E, Jacob R, Lieberman M (1985) Cytosolic free calcium in chick heart cells. J Mol Cell Cardiol 17, 221–231

    Article  PubMed  CAS  Google Scholar 

  31. Nawrath H (1989) Adrenoceptor mediated changes of excitation and contraction in isolated heart muscle preparations. J Cardiovasc Pharmacol 14, 1–10

    Article  Google Scholar 

  32. Neely JR, Whitmer JT, Rovetto MJ (1975) Effect of coronary flow on glycolytic flux and intracellular pH of isolated rat hearts. Circ Res 37, 733–741

    Article  PubMed  CAS  Google Scholar 

  33. Neely JR, Grotoyohann LW (1984) Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemie hearts. Circ Res 55, 816–824

    Article  PubMed  CAS  Google Scholar 

  34. Neher E, Lux HD (1973) Rapid changes of potassium concentration at the outer surface of exposed single neurons during membrane current flow. J Gen Physiol 61, 385–399

    Article  PubMed  CAS  Google Scholar 

  35. Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305, 147–148

    Article  PubMed  CAS  Google Scholar 

  36. Partridge LD, Swandulla D (1988) Calcium activated non-specific cation channels. TINS 11, 69–72

    PubMed  CAS  Google Scholar 

  37. Pecker MS, Im WB, Sonn JK, Lee CO (1986) Effect of norepinephrine and cyclic AMP on intracellular sodium ion activity and contractile force in canine cardiac Purkinje fibers. Circ Res 59, 390–397

    Article  PubMed  CAS  Google Scholar 

  38. Polimeni PI, Buraczewski SI (1988) Expansion of extracellular tracer spaces in the isolated heart perfused with crystalloid solutions: expansion of extracellular space, trans-sarcolemmal leakage, or both? J Mol Cell Cardiol 20, 15–22

    Article  PubMed  CAS  Google Scholar 

  39. Rau EE, Shine KI, Langer GA (1977) Potassium exchange and mechanical performance in anoxic mammalian myocardium. Am J Physiol 232, H85–H94

    PubMed  CAS  Google Scholar 

  40. Reibel DK, Rovetto MJ (1978) Myocardial ATP synthesis and mechanical function following oxygen deficiency. Am J Physiol 234, H620–H624

    PubMed  CAS  Google Scholar 

  41. Rovetto MJ, Whitmer JT, Neely JR (1973) Comparison of the effects of anoxia and whole heart ischemia on carbohydrate utilization in isolated working rat hearts. Circ Res 22, 699–711

    Article  Google Scholar 

  42. Scheufler E, Peters T (1987) Determination of the extracellular space with nonradioactive Co3+EDTA and simultaneous estimation of Na, K, Ca, and Mg contents in isolated guinea-pig heart preparations by atomic absorptions spectrometry. Basic Res Cardiol 82, 341–347

    Article  PubMed  CAS  Google Scholar 

  43. Schömig A, Fischer S, Kurz T, Richardt G, Schömig E (1987) Nonexocytotic release of noradrenaline in the ischemie and anoxic rat heart: mechanism and metabolic requirements. Circ Res 60, 194–205

    Article  PubMed  Google Scholar 

  44. Smith GL, Allen DG (1988) Effects of metabolic blockade on intracellular calcium concentration in isolated ferret ventricular muscle. Circ Res 62, 1223–1236

    Article  PubMed  CAS  Google Scholar 

  45. Stanfield PR (1983) Tetraethylammonium ions and the potassium permeability of excitable cells. Rev Physiol Biochem Pharmacol 97, 1–67

    Article  PubMed  CAS  Google Scholar 

  46. Steenbergen C, Murphy E, Levy L, London RE (1987) Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat hearts. Circ Res 60, 700–707

    Article  PubMed  CAS  Google Scholar 

  47. Tani M, Neely JR (1989) Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemie rat hearts. Circ Res 65, 1045–1056

    Article  PubMed  CAS  Google Scholar 

  48. Tranum-Jensen J, Janse MJ, Fiolet JWT, Krieger WJG (1981) Tissue osmolality, cell swelling, and reperfusion in acute regional myocardial ischemia in the isolated porcine heart. Circ Res 49, 364–381

    Article  PubMed  CAS  Google Scholar 

  49. Wilde AAM, Kléber AG (1986) The combined effects of hypoxia, high K+, and acidosis on the intracellular sodium activity and resting potential in guinea pig papillary muscle. Circ Res 58, 249–256

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerd Heusch John Ross Jr.

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hirche, H., Knopf, H., Homburg, H., Walser, R. (1991). Does Noradrenaline Influence the Extracellular Accumulation of Potassium, Sodium, Calcium, and Hydrogen Ions ([K+]e, [Na+]e, [Ca2+]e, [H+]e) during Global Ischemia in Isolated Rat Hearts?. In: Heusch, G., Ross, J. (eds) Adrenergic Mechanisms in Myocardial Ischemia. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-11038-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11038-6_23

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-11040-9

  • Online ISBN: 978-3-662-11038-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics