Skip to main content

Adrenergic Control of Transmural Coronary Blood Flow

  • Conference paper
Adrenergic Mechanisms in Myocardial Ischemia

Summary

Tachycardia and an increase in myocardial metabolism result from the sympathetic activation that occurs during baroreceptor reflexes, emotion, and exercise. Paradoxically, a concomitant adrenergic α-receptor-mediated coronary vasoconstriction competes with the local metabolic coronary vasodilation that occurs during these conditions, and thereby limits metabolic hyperemia. Measurements of transmural blood flow in α-receptor blocked and α-receptor intact regions of the left ventricle during exercise demonstrate that adrenergic vasoconstriction helps maintain blood flow to the vulnerable subendocardium during tachycardia. This may be the explanation as to why paradoxical adrenergic coronary vasoconstriction has evolved. During controlled conditions of constant coronary flow, an anti-transmural steal effect due to adrenergic vasoconstriction in the subepicardium can be demonstrated during ischemic conditions. These observations demonstrate unexpected beneficial effects of adrenergic coronary vasoconstriction during tachycardia and cardiovascular stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aversano T, Becker LC (1985) Persistence of coronary vasodilator reserve despite functionally significant flow reduction. Am J Physiol 248:H403–H411

    PubMed  CAS  Google Scholar 

  2. Bache RJ, Dai X-Z, Herzog CA, Schwartz JS (1987) Effects of nonselective and selective α1-adrenergic blockade on coronary blood flow during exercise. Circ Res 61(Suppl. II):II-36-II-41

    Google Scholar 

  3. Bache RJ, Homans DC, Schwartz JS, Dai X-Z (1988) Differences in the effects of alpha-1 adrenergic blockade with prazosin and indoramin on coronary blood flow during exercise. J Pharmacol Exp Ther 245, 232–237

    PubMed  CAS  Google Scholar 

  4. Billman GE, Randall DC (1981) Mechanisms mediating the coronary vascular response to behavioral stress in the dog. Circ Res 48, 214–223

    Article  PubMed  CAS  Google Scholar 

  5. Brown BG, Bolson EL, Dodge HT (1984) Dynamic mechanisms in human coronary stenosis. Circulation 70, 917–922

    Article  PubMed  CAS  Google Scholar 

  6. Brown BG, Josephson MA, Petersen RB, Pierce CD, Wong M, Hecht HS, Bolson E, Dodge HT (1981) Intravenous dipyridamole combined with isometric handgrip for near maximal acute increase in coronary flow in patients with coronary artery disease. Am J Cardiol 48, 1077–1085

    Article  PubMed  CAS  Google Scholar 

  7. Brown BG, Lee AB, Bolson EL, Dodge HT (1984) Reflex constriction of significant coronary stenosis as a mechanism contributing to ischemic left ventricular dysfunction during isometric exercise. Circulation 70, 18–24

    Article  PubMed  CAS  Google Scholar 

  8. Canty JM, Klocke FJ (1985) Reduced regional myocardial perfusion in the presence of pharmacologic vasodilator reserve. Circulation 71, 370–377

    Article  PubMed  Google Scholar 

  9. Chilian WM, Ackell PH (1988) Transmural differences in sympathetic coronary constriction during exercise in the presence of coronary stenosis. Circ Res 62, 216–225

    Article  PubMed  CAS  Google Scholar 

  10. Chilian WM, Harrison DG, Haws CW, Snyder WD, Marcus ML (1986) Adrenergic coronary tone during submaximal exercise in the dog is produced by circulating catecholamines. Evidence for adrenergic denervation supersensitivity in the myocardium but not in coronary vessels. Circ Res 58, 68–82

    Article  PubMed  CAS  Google Scholar 

  11. Dai X-Z, Herzog CA, Schwartz JS, Bache RJ (1986) Coronary blood flow during exercise following nonselective and selective a,-adrenergic blockade with indoramin. J Cardiovasc Pharmacol 8, 574–581

    Article  PubMed  CAS  Google Scholar 

  12. Deussen A, Heusch G, Thämer V (1985) α2-Adrenoceptor-mediated coronary vasoconstriction persists after exhaustion of coronary dilator reserve. Eur J Pharmacol 115, 147–153

    Article  PubMed  CAS  Google Scholar 

  13. DiSalvo J, Parker PE, Scott JB, Haddy FJ (1971) Carotid baroceptor influence on coronary vascular resistance in the anesthetized dog. Am J Physiol 221, 156–160

    PubMed  CAS  Google Scholar 

  14. Ely SW, Sawyer DC, Anderson DL, Scott JB (1981) Carotid sinus reflex vasoconstriction in right coronary circulation of dog and pig. Am J Physiol 241:H149–H154

    PubMed  CAS  Google Scholar 

  15. Feigl EO (1968) Carotid sinus reflex control of coronary blood flow. Circ Res 23, 223–237

    Article  PubMed  CAS  Google Scholar 

  16. Feigl EO (1987) The paradox of adrenergic coronary vasoconstriction. Circulation 76, 737–745

    Article  PubMed  CAS  Google Scholar 

  17. Feldman RL, Whittle JL, Marx JD, Pepine CJ, Conti CR (1982) Regional coronary hemodynamic responses to cold stimulation in patients without variant angina. Am J Cardiol 49, 665–673

    Article  PubMed  CAS  Google Scholar 

  18. Gage JE, Hess OM, Murakami T, Ritter M, Grimm J, Krayenbuehl HP (1986) Vasoconstriction of stenotic coronary arteries during dynamic exercise in patients with classic angina pectoris — reversibility by nitroglycerin. Circulation 73, 865–876

    Article  PubMed  CAS  Google Scholar 

  19. Gould KL (1985) Quantification of coronary artery stenosis in vivo. Circ Res 57, 341–353

    Article  PubMed  CAS  Google Scholar 

  20. Guyton RA, McClenathan JH, Newman GE, Michaelis LL (1977) Significance of subendocardial S-T segment elevation caused by coronary stenosis in dog — epicardial S-T segment depression, local ischemia and subsequent necrosis. Am J Cardiol 40, 373–380

    Article  PubMed  CAS  Google Scholar 

  21. Gwirtz PA, Overn SP, Mass HJ, Jones CE (1986) α1-Adrenergic constriction limits coronary flow and cardiac function in running dogs. Am J Physiol 250:H1117–H1126

    PubMed  CAS  Google Scholar 

  22. Gwirtz PA, Stone HL (1981) Coronary blood flow and myocardial oxygen consumption after alpha adrenergic blockade during submaximal exercise. J Pharmacol Exp Ther 217, 92–98

    PubMed  CAS  Google Scholar 

  23. Heineman FW, Grayson J (1985) Transmural distribution of intramyocardial pressure measured by micropipette technique. Am J Physiol 249:H1216–H1223

    PubMed  CAS  Google Scholar 

  24. Heusch G, Deussen A (1983) The effects of cardiac sympathetic nerve stimulation on perfusion of stenotic coronary arteries in the dog. Circ Res 53, 8–15

    Article  PubMed  CAS  Google Scholar 

  25. Heusch G, Deussen A, Thämer V (1985) Cardiac sympathetic nerve activity and progressive vasoconstriction distal to coronary stenoses: feed-back aggravation of myocardial ischemia. J Auton Nerv Syst 13, 311–326

    Article  PubMed  CAS  Google Scholar 

  26. Heyndrickx GR, Muylaert P, Pannier JL (1982) α-Adrenergic control of oxygen delivery to myocardium during exercise in conscious dogs. Am J Physiol 242:H805–H809

    PubMed  CAS  Google Scholar 

  27. Heyndrickx GR, Vilaine JP, Moerman EJ, Leusen I (1984) Role of prejunctional α2-adrenergic receptors in the regulation of myocardial performance during exercise in conscious dogs. Circ Res 54, 683–693

    Article  PubMed  CAS  Google Scholar 

  28. Hoffman JIE, Baer RW, Hanley FL, Messina LM (1985) Regulation of transmural myocardial blood flow. J Biomech Eng 107, 2–9

    Article  PubMed  CAS  Google Scholar 

  29. Huang AH, Feigl EO (1988) Adrenergic coronary vasoconstriction helps maintain uniform transmural blood flow distribution during exercise. Circ Res 62, 286–298

    Article  PubMed  CAS  Google Scholar 

  30. Kern MJ, Ganz P, Horowitz JD, Gaspar J, Barry WH, Lorell BH, Grossman W, Mudge GH (1983) Potentiation of coronary vasoconstriction by beta-adrenergic blockade in patients with coronary artery disease. Circulation 67, 1178–1185

    Article  PubMed  CAS  Google Scholar 

  31. Kresh JY, Fox M, Brockman SK, Noordergraaf A (1990) Model-based analysis of transmural vessel impedance and myocardial circulation dynamics. Am J Physiol 258:H262–H276

    PubMed  CAS  Google Scholar 

  32. Laxson DD, Dai X-Z, Homans DC, Bache RJ (1989) The role of α1 and α2-adrenergic receptors in mediation of coronary vasoconstriction in hypoperfused ischemic myocardium during exercise. Circ Res 65, 1688–1697

    Article  PubMed  CAS  Google Scholar 

  33. Liang IYS, Stone HL (1982) Effect of exercise conditioning on coronary resistance. J Appl Physiol 53, 631–636

    PubMed  CAS  Google Scholar 

  34. Lowe DK, Rothbaum DA, McHenry PL, Corya BC, Knoebel SB (1975) Myocardial blood flow response to isometric (handgrip) and treadmill exercise in coronary artery disease. Circulation 51, 126–131

    Article  PubMed  CAS  Google Scholar 

  35. Malacoff RF, Mudge GH, Holman L, Idoine J, Bifolck L, Cohn PF (1983) Effect of the cold pressor test on regional myocardial blood flow in patients with coronary artery disease. Am Heart J 106, 78–84

    Article  PubMed  CAS  Google Scholar 

  36. Malliani A, Schwartz PJ, Zanchetti A (1969) A sympathetic reflex elicited by experimental coronary occlusion. Am J Physiol 217, 703–709

    PubMed  CAS  Google Scholar 

  37. Mohrman DE, Feigl EO (1978) Competition between sympathetic vasoconstriction and metabolic vasodilation in the canine coronary circulation. Circ Res 42, 79–86

    Article  PubMed  Google Scholar 

  38. Mudge GH Jr, Goldberg S, Gunther S, Mann T, Grossman W (1979) Comparison of metabolic and vasoconstrictor stimuli on coronary vascular resistance in man. Circulation 59, 544–550

    Article  PubMed  Google Scholar 

  39. Mudge GH Jr, Grossman W, Mills RM Jr, Lesch M, Braunwald E (1976) Reflex increase in coronary vascular resistance in patients with ischemic heart disease. N Engl J Med 295, 1333–1337

    Article  PubMed  Google Scholar 

  40. Murray PA, Vatner SF (1979) α-Adrenoceptor attenuation of the coronary vascular response to severe exercise in the conscious dog. Circ Res 45, 654–660

    Article  PubMed  CAS  Google Scholar 

  41. Nathan HJ, Feigl EO (1986) Adrenergic vasoconstriction lessens transmural steal during coronary hypoperfusion. Am J Physiol 250:H645–H653

    PubMed  CAS  Google Scholar 

  42. Pantely GA, Bristow JD, Swenson LJ, Ladley HD, Johnson WB, Anselone CG (1985) Incomplete coronary vasodilation during myocardial ischemia in swine. Am J Physiol 249:H638–H647

    PubMed  CAS  Google Scholar 

  43. Powell JR, Feigl EO (1979) Carotid sinus reflex coronary vasoconstriction during controlled myocardial oxygen metabolism in the dog. Circ Res 44, 44–51

    Article  PubMed  CAS  Google Scholar 

  44. Seitelberger R, Guth BD, Heusch G, Lee J-D, Katayama K, Ross J Jr (1988) Intracoronary α2-adrenergic receptor blockade attenuates ischemia in conscious dogs during exercise. Circ Res 62, 436–442

    Article  PubMed  CAS  Google Scholar 

  45. Spaan JAE (1985) Coronary diastolic pressure-flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ Res 56, 293–309

    Article  PubMed  CAS  Google Scholar 

  46. Strader JR, Gwirtz PA, Jones CE (1988) Comparative effects of alpha-1 and alpha-2 adrenoceptors in modulation of coronary flow during exercise. J Pharmacol Exp Ther 246, 772–778

    PubMed  CAS  Google Scholar 

  47. Verrier RL, Hagestad EL, Lown B (1987) Delayed myocardial ischemia induced by anger. Circulation 75, 249–254

    Article  PubMed  CAS  Google Scholar 

  48. Warltier DC, Gross GJ, Brooks HL (1981) Pharmacologic-vs. ischemia-induced coronary artery vasodilation. Am J Physiol 240:H767–H774

    PubMed  CAS  Google Scholar 

  49. Wüsten B, Flameng W, Schaper W (1974) The distribution of myocardial flow. Part I: Effects of experimental coronary occlusion. Basic Res Cardiol 69, 422–434

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerd Heusch John Ross Jr.

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feigl, E.O. (1991). Adrenergic Control of Transmural Coronary Blood Flow. In: Heusch, G., Ross, J. (eds) Adrenergic Mechanisms in Myocardial Ischemia. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-11038-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11038-6_14

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-11040-9

  • Online ISBN: 978-3-662-11038-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics