Wheat pp 152-166 | Cite as

Triticum × Aegilops Hybrids Through Embryo Culture

  • J. Valkoun
  • J. Dostál
  • D. Kučerová
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 13)


Genetic diversity in cultivated bread wheat (Triticum aestivum L.) which could be explored for breeding modern, high-yielding varieties resistant to various biotic and abiotic stresses, may be insufficient in some cases. The introduction of new useful genes by wide hybridization is one of the most effective means for enrichment of the gene pool of the cultivated hexaploid wheat (Plucknett et al. 1987). The current status and results of wide crosses in wheat have been recently discussed by several authors (Feldman and Sears 1981; Sharma and Gill 1983; Mujeeb-Kazi and Kimber 1985; Kimber and Feldman 1987) (see also Pienaar, Chap. II.4, this Vol.).


Powdery Mildew Leaf Rust Hexaploid Wheat Stripe Rust Stem Rust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alonso LC, Kimber G (1984) Use of restitution nuclei to introduce alien genetic variation into hexaploid wheat. Z Pflanzenzücht 92: 185–189Google Scholar
  2. Dyck PL, Kerber ER (1970) Inheritance in hexaploid wheat of adult-plant leaf rust resistance derived from Aegilops squarrosa. Can J Genet Cytol 12: 175–180Google Scholar
  3. Feldman M, Sears ER (1981) The wild gene resources of wheat. Sci Am 244: 102–112CrossRefGoogle Scholar
  4. Gill BS, Raupp WJ (1987) Direct genetic transfers from A egilops squarrosa L. to hexaploid wheat. Crop Sci 27: 445–450CrossRefGoogle Scholar
  5. Gill BS, Raupp WJ, Sharma HC, Browder LE, Hatchett JH, Harvey TJ, Moseman JG, Waines JG (1986) Resistance in A egilops squarrosa to wheat leaf rust, wheat powdery mildew, greenbug, and Hessian fly. Plant Dis 70: 553–556CrossRefGoogle Scholar
  6. Harvey TL, Martin TJ, Livers RW (1980) Resistance to biotype C greenbug in synthetic hexaploid wheats derived from Triticum tauschii. J Econ Entomol 73: 387–389Google Scholar
  7. Hatchett JH, Gill BS (1981) D-genome sources of resistance in Triticum tauschii to Hessian fly. J Hered 72: 126–127Google Scholar
  8. Hermsen JGT (1966) Hybrid necrosis and red hybrid chlorosis in wheat. In: MacKey J (ed) Proc 2nd Int Wheat genetics Symp, Univ Lund 1963. Hereditas Suppl 2: 439–452Google Scholar
  9. Joppa LR (1980) Inheritance of resistance to greenbug toxicity in an amphiploid of Triticum turgidum/T. tauschii. Crop Sci 20: 343–345CrossRefGoogle Scholar
  10. Kerber ER (1987) Resistance to leaf rust in hexaploid wheat: L32, a third gene derived from Triticum tauschii. Crop Sci 27: 204–206CrossRefGoogle Scholar
  11. Kerber ER, Dyck PL (1969) Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from A egilops squarrosa. Can J Genet Cytol l 1, 639–647Google Scholar
  12. Kerber ER, Dyck PL (1973) Inheritance of stem rust resistance transferred from diploid wheat (Triticum monococcum) to tetraploid and hexaploid wheat and chromosome location of the gene involved. Can J Genet Cytol 15: 397–409Google Scholar
  13. Kerber ER, Dyck PL (1978) Resistance to stem and leaf rust of wheat in A egilops squarrosa and transfer of a gene for stem rust resistance to hexaploid wheat. In: Ramanujam S (ed) Proc 5th Int Wheat genetics Symp, New Delhi. Soc Genet Plant Breed, New Delhi, pp 358–364Google Scholar
  14. Kihara K (1924) Cytologische and genetische Studien bei wichtigen Getreidearten mit besonderer Rücksicht auf das Verhalten der Chromosomen and die Sterilität in den Bastarden. Mem Coll Sci Kyoto Imp Univ Ser B 1: 1–200Google Scholar
  15. Kihara K (1944) Die Entdeckung der DD-Analysatoren beim Weizen. Agric Hortic (Tokyo) 19: 889–890Google Scholar
  16. Kimber G, Feldman M (1987) Wild wheat: an introduction. Coll Agric, Univ Missouri. Col Spec Rep 353Google Scholar
  17. Linsmaier EM, Skoog F (1965) Organic factor requirements of tobacco tissue cultures. Physiol Plant 18: 100–127CrossRefGoogle Scholar
  18. McFadden ES, Sears ER (1944) The artificial synthesis of Triticum spelta. Rec Genet Soc Am 13: 26–27Google Scholar
  19. McIntosh RA, Dyck PL, The TT, Cusick J, Milne DL (1984) Cytogenetical studies in wheat XIII, Sr 35 — a third graminis tritici. Z Pflanzenzücht 92: 1–14Google Scholar
  20. Mujeeb-Kazi A, Kimber G (1985) The production, cytology and practicality of wide hybrids in the Triticeae. Cereal Res Commun 13: 111–124Google Scholar
  21. Pasquini M (1980) Disease resistance in wheat: II. Behaviour ofAegilops species with respect to Puccinia recondita f. sp. tritici. Genet Agric 34: 133–148Google Scholar
  22. Plucknett DL, Smith NJH, Williams JT, Anishetty NM (1987) Gene banks and the worlds’ food. Univ Press, Princeton, NJGoogle Scholar
  23. Raupp WJ, Browder LE, Gill BS (1983) Leaf rust resistance in Aegilops squarrosa, its transfer and expression in common wheat (Triticum aestivum L.) Phytopathology 73:818 (Abstr)Google Scholar
  24. Riley R, Chapman V (1960) The D genome of hexaploid wheat. Wheat Inf Sery 11: 18–19Google Scholar
  25. Sears ER, Kimber G, Loegering WQ, Sears LM, Abubakar MB, Worstel JV, Alonso LC, Espinaso A, Dajin Liu (1981) Cytogenetic studies. Annu Wheat Newslett 23: 118–119Google Scholar
  26. Sharma HC, Gill BS (1983) Wide hybridization in wheat. Euphytica 32: 17–31CrossRefGoogle Scholar
  27. Stakman EC, Stewart DM, Loegering WQ (1962) Identification of physiological races of Puccinia graminis f. sp. tritici. Minn Agric Exp Sci J Ser Pap 4691Google Scholar
  28. Stam P, Zeven AC (1981) The theoretical proportion of the donor genome in near-isogenic lines of self-fertilizers bred by backcrossing. Euphytica 30: 227–238CrossRefGoogle Scholar
  29. The TT, Baker EP (1975) Basic studies relating to the transferrence of genetic characters from Triticum monococcum L. to hexaploid wheat. Aust J Biol Sci 28: 189–199Google Scholar
  30. Valkoun J, Kučerová D, Bartoš P (1982) Genetics of resistance of cultivated einkorn wheat to stripe rust and powdery mildew. Ann Res Inst Crop Prod Prague 22: 6–16Google Scholar
  31. Valkoun J, Hammer K, Kučerová D, Bartoš P (1985a) Disease resistance in the genusAegilops L. —stem rust, leaf rust, stripe rust, and powdery mildew. Kulturpflanze 33: 133–153CrossRefGoogle Scholar
  32. Valkoun J, Kučerová D. Bartoš P (1985b) The third independent transfer of the Sr35 gene from Triticum monococcum to T. aeslivum. Cereal Rusts Bull 13: 37–39Google Scholar
  33. Valkoun J, Kučerová D, Barto P (1986) Transfer of leaf rust resistance from Triticum monococcum to hexaploid wheat. Z Pflanzenzucht 96: 271–278Google Scholar
  34. Winkle ME, Kimber G (1976) Colchicine treatment hybrids in the Triticinae. Cereal Res Commun 4: 317–320Google Scholar
  35. Zhao Y, Kimber G (1984) New hybrids with D-genome wheat relatives. Genetics 106: 509–515PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • J. Valkoun
    • 1
  • J. Dostál
    • 2
  • D. Kučerová
    • 1
  1. 1.Research Institute of Crop ProductionPrague-RuzyněCzechoslovakia
  2. 2.Research and Breeding Institute of Ornamental GardeningPru̇honiceCzechoslovakia

Personalised recommendations