Advertisement

Wheat pp 460-478 | Cite as

Wheat Haploids Through the Salmon Method

  • K. Tsunewaki
  • Y. Mukai
Chapter
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 13)

Abstract

Triticum aestivum strain Salmon is a form of common wheat having 2n = 42 chromosomes. The Salmon method refers to a means for converting an ordinary common wheat cultivar into a haploid producer by transferring to it a parthenogenesis-inducing Aegilops cytoplasm and the 1 BL-1 RS translocation chromosome of Salmon; 1BL is the long arm of wheat chromosome 1B and 1 RS is the short arm of rye chromosome 1R.

Keywords

Twin Pair Twin Formation Alloplasmic Line Common Wheat Cultivar Haploid Embryo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Katayama Y (1934) Haploid formation by X-rays in Triticum monococcum. Cytologia 5: 233 - 237CrossRefGoogle Scholar
  2. Kawakami J (1967) Studies on the twin and triplet which appeared in cereals. Spec Rep Lab Genet Breed Fac Agric Iwate Univ, pp 163 (in Japanese with English summary)Google Scholar
  3. Kihara H, Kishimoto E (1942) Embryologische Studien über die Entstehungsweise der Haploiden durch verspätete Bestäubung bei Triticum monococcum var. vulgare. Seiken Zihô 1: 1-9 (in Japanese with German summary)Google Scholar
  4. Kihara H, Tsunewaki K (1962) Use of an alien cytoplasm as a new method of producing haploids. Jpn J Genet 37: 310 - 313CrossRefGoogle Scholar
  5. Kobayashi M, Tsunewaki K (1978) Haploid induction and its genetic mechanism in alloplasmic common wheat. J Hered 71: 9 - 14Google Scholar
  6. Kobayashi M, Tsunewaki K (1980) Production of an effective haploid inducer utilizing the kotschyi and variabilis cytoplasms. In: Tsunewaki K (ed) Genetic diversity of the cytoplasm in Triticum and Aegilops. Jpn Soc Prom Sci Tokyo, pp 250 - 265Google Scholar
  7. Mettin D, Blutner WD, Schlegel G (1973) Additional evidence on spontaneous 1B/1R wheat-rye substitutions and translocations. In: Proc 4th Int Wheat Genet Symp Columbia, Missouri, pp 179-184Google Scholar
  8. Mukai Y (1981) Genetic studies of the wheat haploids induced by alien cytoplasms. Mem Osaka Kyoiku Univ III, 30 (1.2): 31 - 55Google Scholar
  9. Mukai Y (1983a) Determination of the chromosome arm carrying a male fertility-restoring gene against the cytoplasm of Aegilops uniaristata in wheat. Mem Osaka Kyoiku Univ III, 32: 43 - 53Google Scholar
  10. Mukai Y (1983b) Interactions ofA egilops kotschyi and A e. variabilis cytoplasms with homoeologus groupGoogle Scholar
  11. 1.
    chromosomes in common wheat. In: Proc 6th Int Wheat Genet Symp, Kyoto, pp 517-527Google Scholar
  12. Mukai Y (1985) Production of haploid plant by genetic methods (Japanese). Saibo 17: 150 - 155Google Scholar
  13. Mukai Y, Nakanishi S (1982) Genetic mechanism of parthenogenesis in common wheat with an alien cytoplasm. Jpn J Genet 57:665 (Abstr)Google Scholar
  14. Mukai Y, Tsunewaki K (1979) Basic studies on hybrid wheat breeding. VII. A new male sterility-fertility restoration system in common wheat utilizing the cytoplasms ofAegilops kotschyi and Ae. variabilis. Theor Appl Genet 54: 153 - 160CrossRefGoogle Scholar
  15. Ogihara Y, Tsunewaki K (1983) The diversity of chloroplast DNA among Triticum and A egilops species. In: Proc 6th Int Wheat Genet Symp, Kyoto, pp 407-413Google Scholar
  16. Ogihara Y, Tsunewaki K (1988) Diversity and evolution of chloroplast DNA in Triticum and Aegilops as revealed by restriction fragment analysis. Theor Appl Genet 76: 321 - 332CrossRefGoogle Scholar
  17. Tahir CM, Tsunewaki K (1969) Monosomic analysis of Triticum spelta var. duhamelianum, a fertility-restorer for T timopheevi cytoplasm. Jpn J Genet 44: 1 - 9CrossRefGoogle Scholar
  18. Terachi T, Tsunewaki K (1986) The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops. V. Mitochondrial genome diversity amongAegilops species having identical chloroplast genomes. Theor Appl Genet 73: 175 - 181CrossRefGoogle Scholar
  19. Tsujimoto H, Tsunewaki K (1984) Chromosome location of a fertility-restoring gene of a common wheat Chinese Spring for the Aegilops mutica cytoplasm. Wheat Inf Sery 58: 4 - 8Google Scholar
  20. Tsunewaki K (1964) Genetic studies of a 6x-derivative from an 8x Triticale. Can J Genet Cytol 6:1-11 Tsunewaki K (1974) Monosomic analyses of two restorers to Ae. caudata and A e. umbellulata cytoplasms. Jpn J Genet 49: 425 - 433CrossRefGoogle Scholar
  21. Tsunewaki K, Tsujimoto H (1983) Genetic diversity of the cytoplasm in Triticum and Aegilops. In: Proc 6th Int Wheat Genet Symp, Kyoto pp 1139-1144Google Scholar
  22. Tsunewaki K, Noda K, Fujisawa T (1968) Haploid and twin formation in a wheat strain Salmon with alien cytoplasms. Cytologia 33: 526 - 538CrossRefGoogle Scholar
  23. Tsunewaki K, Endo TR, Mukai Y (1974) Further discovery of alien cytoplasms inducing haploids and twins in common wheat. Theor Appl Genet 45: 104 - 109CrossRefGoogle Scholar
  24. Tsunewaki K, Mukai Y, Endo TR, Tsuji S, Murata M (1976a) Genetic diversity of the cytoplasm in Triticum and Aegilops. V. Classification of 23 cytoplasms into eight plasma types. Jpn J Genet 51: 175 - 191CrossRefGoogle Scholar
  25. Tsunewaki K, Mukai Y, Endo TR, Tsuji S, Murata M (1976b) Genetic diversity of the cytoplasm inGoogle Scholar
  26. Triticum and Aegilops. VI. Distribution of the haploid-inducing cytoplasms. Jpn J Genet 51:193-200 Tsunewaki K, Mukai Y, Endo TR (1980) Detailed studies of the alloplasmic wheats produced in KyotoGoogle Scholar
  27. University. In: Tsunewaki K (ed) Genetic diversity of the cytoplasm in Triticum and Aegilops. Jpn SocGoogle Scholar
  28. Prom Sci, Tokyo, pp 49-101Google Scholar
  29. Tsunewaki K, Spetsov P, Yonezawa K (1985) Increasing genetic variability in common wheat by utilization of alien cytoplasms - Cytoplasmic effects on the performance and interplant variability of the F1 and F, generations of the cross, Triticum aestivum cv. Norin 26 X cv. Norin 61. Jpn J Breed 35: 398 - 412Google Scholar
  30. Yonezawa K, Tatematsu N, Spetsov P, Tsunewaki K (1986) Increasing genetic variability in common wheat by utilization of alien cytoplasms - Effects offourA egilops cytoplasms on the genetic variability of the F,, generation of the cross, Norin 26 X Norin 61. Jpn J Breed 36: 262 - 273Google Scholar
  31. Zeller FJ (1973) 1B/1 R wheat-rye chromosome substitutions and translocations. In: Proc 4th Int Wheat Genet Symp, Columbia, Missouri, pp 209 - 221Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • K. Tsunewaki
    • 1
  • Y. Mukai
    • 2
  1. 1.Laboratory of Genetics, Faculty of AgricultureKyoto UniversityKyoto 606Japan
  2. 2.Laboratory of BiologyOsaka Kyoiku UniversityIkeda 563Japan

Personalised recommendations