Skip to main content

Carrageenan as a Matrix for Immobilizing Microalgal Cells for Wastewater Nutrients Removal

  • Chapter
Wastewater Treatment with Algae

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

Abstract

Microalgae are a group of single celled photoautotrophs and have been suggested as an alternative biological system in treating wastewater to the conventional activated sludge process.1 Soluble contaminants in domestic or municipal wastewater comprise principally organics which are generally referred to as biochemical oxygen demand (BOD) and inorganic nutrients. Domestic wastewater contains basically all the essential elements for algal growth. Growth of the microalgal biomass assimilates inorganic nutrients directly from wastewater while the production of photosynthetic oxygen stabilizes organic matters in the wastewater. This conception has long been conceived in the moats of the medieval castles and realized in waste stabilization ponds.2–5 The full potential in optimizing the photosynthetic oxygen generation for wastewater treatment is credited to William J. Oswald in the conception of the high rate algal pond systems which optimizes algal growth for wastewater treatment.1,6 The algal wastewater treatment system then draws great attention not only as a means of purifying wastewater, but also for generating valuable algal biomass for other usage or extraction of valuable chemicals.7–9 Earlier works were concerned more so with BOD reduction,1,6 whereas attention gradually shifted to nutrients stripping from wastewater as eutrophication of receiving water became more serious.10,11

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oswald WJ, Gotaas HB, Golueke CG et al. Algae in waste treatment. Sewage and Industrial Wastes 1957; 29(4):437-457.

    Google Scholar 

  2. Pearson HW. Algae associated with sewage treatment. In: Dasilva EJ, Dommergues YR, Nyns EJ, Ratledge C, eds. Microbial Technology in the Developing World. Oxford: Oxford University Press, 1987: 260–288.

    Google Scholar 

  3. Fallowfield HJ, Garrett MK. The treatment of wastes by algal culture. Journal of Applied Bacteriology Symposium Supplement 1985; 187S-zo5S.

    Google Scholar 

  4. Oswald WJ. Ponds in the twenty-first century. Wat Sci Tech 1995; 31(12):1–8.

    Google Scholar 

  5. Mara DD. Waste stabilization ponds: effluent quality requirements and implications for process design. Wat Sci Tech 1996; 33(7):23–32.

    Google Scholar 

  6. Oswald WJ, Gotaas HB. Photosynthesis in sewage treatment. American Society of Civil Engineers Transactions 1955; 73-105.

    Google Scholar 

  7. Shelef G, Soeder CJ. Algae Biomass: Production and Use. Amsterdam: Elsevier/North Holland Biomedical Press, 1980: 852.

    Google Scholar 

  8. Borowitzka MA, Borowitzka LJ. Microalgal Biotechnology. Cambridge: Cambridge University Press, 1988:447.

    Google Scholar 

  9. De la Node J, De Pauw N. The potential of microalgal biotechnology: a review of production and uses of microalgae. Biotech Adv 1988; 6: 725–770.

    Article  Google Scholar 

  10. Lavoie A, de la Node J. Hyperconcentrated cultures of Scenedesmus obliquus: A new approach for wastewater biological tertiary treatment. Wat Res 1985; 19 (11): 1437–1442.

    Article  CAS  Google Scholar 

  11. Tam NFY, Wong YS. Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp. Environ Pollut 1989; 5819-34.

    Google Scholar 

  12. Middlebrooks EJ, Porcella DB, Gearheart TRA et al. Techniques for algae removal from wastewater stabilization ponds. Journal WPCF 1974; 46(2):2676–2695.

    Google Scholar 

  13. Al-Shayji YA, Puskas K, Al-Daher R. Production and separation of algae in a high-rate ponds system. Environment International 1994; 20(4)541-550.

    Google Scholar 

  14. Bustos Aragon A, Borja Padilla R, Fiestas Ros de Ursinos JA. Experimental study of the recovery of algae cultured in effluents from the anaerobic biological treatment of urban wastewaters. Resources, Conservation and Recycling 1992; 6:293-302.

    Google Scholar 

  15. Lavoie A, de la Node J. Harvesting microalgae with chitosan. J World Maricul Soc 1983; 14: 685–694.

    Article  CAS  Google Scholar 

  16. Nigam BP, Ramanathan PK, Venkataraman LV. Application of chitosan as a flocculant for the cultures of green alga: Scenedesmus acutus. Arch Hydrobiol 1980; 88 (3): 378–387.

    Google Scholar 

  17. Yang PY, Cai T, Wang ML. Immobilized mixed microbial cells for wastewater treatment. Biological Wastes 1988; 23: 295–312.

    Article  CAS  Google Scholar 

  18. Bucke C. Immobilized cells. Philosophical Transactions of the Royal Society, London, Series B 1983; 300369-389.

    Google Scholar 

  19. Kaya VM, Picard G. The viability of Scenedesmus biceelularis cells immobilized on alginate screens following nutrient starvation in air at 100% relative humidity. Biotechnol Bioeng 1995; 46(5):459-464.

    Google Scholar 

  20. Tam NFY, Lau PS, Wong YS. Wastewater inorganic N and P removal by immobilized Chlorella vulgaris. Wat Sci Tech 1994; 30369-374.

    Google Scholar 

  21. Mallick N, Rai LC. Influence of culture density, pH, organic acids and divalent cations on the removal of nutrients and metals by immobilized Anabaena doliolum and Chlorella vulgaris. World Journal of Microbiology and Biotechnology 1993; 9: 196–201.

    Google Scholar 

  22. Travieso T, Benitez F, Dupeiron R. Sewage treatment using immobilized micro-algae. Bioresource Technol 1992; 40: 183–187.

    Google Scholar 

  23. Megharaj M, Pearson HW, Venkateswarlu K. Removal of nitrogen and phosphorus by immobilized cells of Chlorella vulgaris and Scenedesmus bijugatus isolated from soil. Enzyme Microb Technol 1992; 14: 656–658.

    Article  CAS  Google Scholar 

  24. Canizares RO, Rivas L, Montes C et al. Aerated swine-wastewater treatment with k-carrageenan-immobilized Spirulina maxima. Bioresource Technol 1994; 47: 89–91.

    Article  CAS  Google Scholar 

  25. Chevalier P, de la Node J. Wastewater nutrient removal with microalgae immobilized in carrageenan. Enzyme Microb Technol 1985; 7: 621–624.

    Article  CAS  Google Scholar 

  26. Kaya VM, Picard G. Stability of chitosan gel as entrapment matrix of viable Scenedesmus biceelularis cells immobilized on screens for tertiary treatment of wastewater. Bioresource Technol 1996; 56147–155.

    Google Scholar 

  27. Tam NFY, Wong YS, Liong E. Algal growth and nutrient removal in Hong Kong domestic wastewater. In: Hills P, Keen R, Lam KC, Leung CT, Oswell MA, Stokes M, Turner E, eds. Pollution in the Urban Environment. POLMET 88, vol. 2. Hong Kong: Vincent Blue Copy Co. Ltd., 1988: 621–628.

    Google Scholar 

  28. Lau PS, Tam NFY, Wong YS. Effect of algal density on nutrient removal from primary settled wastewater. Environ Pollut 1995; 89: 59–66.

    Google Scholar 

  29. Lau PS, Tam NFY, Wong YS. Wastewater nutrients removal by Chlorella vulgaris: Optimization through Acclimation. Environ Technol 1996; 17: 183–189.

    Article  CAS  Google Scholar 

  30. Lau PS, Tam NFY, Wong YS. Influence of organic-N sources on an algal wastewater treatment system. Resources, Conservation and Recycling 1994; 11: 197–208.

    Google Scholar 

  31. Tam NFY, Wong YS. Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresource Technol 1996; 57:45-50.

    Google Scholar 

  32. Azov Y, Shelef G. Operation of high-rate oxidation ponds: theory and experiments. Wat Res 1982; 19: 1153–1160.

    Article  Google Scholar 

  33. Azov Y, Shelef G. The effect of pH on the performance of high rate oxidation ponds. Wat Sci Tech 1987; 19(12):3H1-383.

    Google Scholar 

  34. Goldman JC, Jenkins D, Oswald WJ. The kinetics of inorganic carbon limited algal growth. Journal WPCF 1974; 46(12):2785–2787.

    Google Scholar 

  35. Azov Y. Effect of pH on inorganic carbon uptake in algal cultures. Applied and Environ Microbiol 1982; 43(6):1300–13o6.

    Google Scholar 

  36. Olaizola M, Duerr EO, Freeman DF. Effect of CO. enhancement in outdoor production system using Tetraselmis. J Appl Phycol 1991; 3: 363–366.

    CAS  Google Scholar 

  37. Talbot P, Lencki RW, de la Noüe J. Carbon dioxide absorption characterization of a bioreactor for biomass production of Phormidium bohneri: comparative study of three types of diffuser. J Appl Phycol 1990; 2:341-350.

    Google Scholar 

  38. Jeanfils J Immobilization of whole cells of green algae or cyanobacteria in insoluble matrices; morphological observation and nitrite reductase activities of immobilized cells. Arch Biol 1986; 97: 209–222.

    CAS  Google Scholar 

  39. Robinson PK, Dainty AL, Goulding KH et al. Physiology of alginate-immobilized Chlorella. Enzyme Microb Technol 1985; 7: 212–216.

    CAS  Google Scholar 

  40. Robinson PK, Goulding KH, Mak AL et al. Factors affecting the growth characteristics of alginate-entrapped Chlorella. Enzyme Microb Technol 1986; 8:729-733.

    Google Scholar 

  41. Lau PS. Wastewater nitrogen and phosphorus removal by free and immobilized microalgal systems. Ph.D. Thesis. Hong Kong: Hong Kong University of Science and Technology, 1995: 283.

    Google Scholar 

  42. Lukaysky J, Komarek J, Lukaysk£ A et al. Metabolic activity and cell structure of immobilized algal cells (Chlorella, Scenedesmus). Arch Hydrobiol Suppl 1986; 73 (2): 261–279.

    Google Scholar 

  43. Guiseley KB. Chemical and physical properties of algal polysaccharides used for cell immobilization. Enzyme Microb Technol 1989; 11: 706–716.

    Article  CAS  Google Scholar 

  44. Tosa T, Sato T, Mori T et al. Immobilization of enzymes and microbial cells using carrageenan as matrix. Biotechnol Bioeng 1979; 21: 1697–1709.

    Article  CAS  Google Scholar 

  45. Marine Colloids Inc. Carrageenan Monograph No. 1, Springfield, New Jersey, 1977.

    Google Scholar 

  46. Kierstan MPJ, Coughlan MP. Immobilization of cells and enzymes by gel entrapment. In: Woodward J, ed. Immobilized Cells and Enzymes, a Practical Approach. Oxford: IRL Press, 1985: 39–48.

    Google Scholar 

  47. Yung KH, Mudd JB. Lipid synthesis in the presence of nitrogenous compounds in Chlorella pyrenoidosa. Plant Physiol 1966; 41: 506–509.

    Article  CAS  Google Scholar 

  48. APHA (American Public Health Association), American Water Works Association and Water Pollution Control Federation. Standard Methods for the Examination of Water and Wastewater. 17th ed. Washington: American Public Health Association, 1989: 1524.

    Google Scholar 

  49. Jeanfils J, Canisius MF, Burlion N. Effect of high nitrate concentrations on growth and nitrate uptake by free-living and immobilized Chlorella vulgaris cells. J Appl Phycol 1993; 5369-374.

    Google Scholar 

  50. Fogg HJ. Algal Cultures and Phytoplankton Ecology. znd ed. Wisconsin: The University of Wisconsin Press, 1975: 175.

    Google Scholar 

  51. Darley WM. Algal Biology: A Physiological Approach. Basic Microbiology Vol. 9. Oxford: Blackwell Scientific Publications, 1982: 168.

    Google Scholar 

  52. Chevalier P, de la Noiie J. Efficiency of immobilized hyperconcentrated algae for ammonium and phosphorus removal from wastewaters. Biotech Lett 1985; 7 (6): 395–400.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lau, P.S., Tam, N.F.Y., Wong, YS. (1998). Carrageenan as a Matrix for Immobilizing Microalgal Cells for Wastewater Nutrients Removal. In: Wong, YS., Tam, N.F.Y. (eds) Wastewater Treatment with Algae. Biotechnology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10863-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10863-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10865-9

  • Online ISBN: 978-3-662-10863-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics