Skip to main content

Metal Ion Binding by Biomass Derived From Nonliving Algae, Lichens, Water Hyacinth Root and Sphagnum Moss

  • Chapter
Wastewater Treatment with Algae

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

Abstract

Many types of microorganisms are known to strongly bind metal ions under certain conditions.1–8 Higher plants have also been studied.9 Although several potential binding groups are thought to exist on the complex cell wall structures of proteins and polysaccharides, binding is thought to involve primarily COOH groups at pH values less than 2,10 while diamine groups may be involved at pHs greater than 6.11 Thus, binding of most metal ions is very pH dependent.12 Generally, optimum binding is observed at a pH of around 5. Little binding is seen below pH values of 2 for most metal ions, but gold (in the form of the AuCl 4 ion) usually binds most strongly at a pH of 2. Darnall and coworkers found that certain algae were able to bind many metals, and especially precious metals such as gold, to a high degree.13,14 Some metals such as silver and mercury seem to be less affected by pH than other metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harris P, Ramelow G. Binding of metal ions by particulate biomass derived from Chlorella vulgaris and Scenedesmus quadricauda. Environ Sci Technol 1990; 24: 220–228.

    Article  CAS  Google Scholar 

  2. Beveridge TJ, Murray RGE. Uptake and retention of metals by cell walls of Bacillus subtilis. J Bacteriol 1976; 127: 1502–1518.

    CAS  Google Scholar 

  3. Horikoshi T, Nakajima A, Sakaguchi T. Uptake of uranium by Chlorella regularis. Agric Biol Chem 1979; 32: 617–623.

    Article  Google Scholar 

  4. Nakajima A, Horikoshi T, Sakaguchi T. Recovery of uranium by immobilized microorganisms. Europ J Appl Microbiol Biotech 1982; 16: 88–91.

    Article  CAS  Google Scholar 

  5. Tsezos M, Volesky B. Biosorption of uranium and thorium. Biotechnol Bioeng 1981; 23: 583–604.

    Article  CAS  Google Scholar 

  6. Tobin JM, Cooper DG, Neufeld RJ. Uptake of metal ions by Rhizopus arrhizus biomass. Appl Environ Microbiol 1984; 47: 821–824.

    CAS  Google Scholar 

  7. Khummongkol D, Canterford GS, Fryer C. Accumulation of heavy metals in unicellular algae. Biotechnol Bioeng 1982; 24: 2643–2660.

    Article  CAS  Google Scholar 

  8. Les A, Walker RW. Toxicity and binding of copper, zinc, and cadmium by the blue-green alga Chroococcus paris. Water Air Soil Pollut 1984; 23: 129–139.

    Article  CAS  Google Scholar 

  9. Drake LR, Rayson GD. Plant-derived materials for metal ion-selective binding and preconcentration. Anal Chem 1996; 68: 22A - 27A.

    Article  CAS  Google Scholar 

  10. Grist RH, Oberholser K, Schwartz D, Marzoff J, Ryder D, Crist DR. Interactions of metals and protons with algae. Env Sci Tech 1988; 22755–760.

    Google Scholar 

  11. Huel-Yang D Ke, Rayson GD. Characterization of Cd binding sites on Datura innoxia using “3Cd NMR spectrometry. Environ Sci Technol 1992; 26: 1202–1205.

    Article  CAS  Google Scholar 

  12. Ramelow GJ, Zhang Y, Liu L. Uptake of metallic ions from aqueous solution by dried lichen biomass. Microbios 1991; 66: 95–105.

    CAS  Google Scholar 

  13. Darnall D, Greene B, Hosea M, McPherson M, Henzi M, Alexander MD. Recovery of heavy metals by immobilized algae. In: Thompson R, ed. Trace Metal Removal from Aqueous Solution, Special Publication No. 61, Royal Society of Chemistry:1–25.

    Google Scholar 

  14. Greene B, Hosea M, McPherson R, Henzi M, Alexander MD, Darnall D. Interaction of gold(I) and gold(II) complexes with algal biomass. Env Sci Technol 1986; 20: 627–632.

    Article  CAS  Google Scholar 

  15. Ramelow GJ, Liu L, Himel C, Fralick D, Zhao Y, Tong C. The analysis of dissolved metals in natural waters after preconcentration on biosorbents of immobilized lichen and seaweed biomass. Int J Environ Anal Chem 1993; 53: 219–232.

    Article  CAS  Google Scholar 

  16. Trujillo M, Jeffers TH, Ferguson C, Stevenson HQ. Mathematically modeling the removal of heavy metals from a wastewater using immobilized biomass. Env Sci Technol 1991; 25: 1559–1565.

    Article  CAS  Google Scholar 

  17. Kuyucak N, Volesky B. Accumulation of cobalt by marine alga. Biotechnol Bioeng 1989; 33: 809–814.

    Article  CAS  Google Scholar 

  18. Kuyucak N, Volesky B. Accumulation of gold by algal biosorbent. Biorecovery 1989; 1: 189–204.

    CAS  Google Scholar 

  19. Sawidis Th, Voulgaropoulos AN. Seasonal accumulation of iron, cobalt, and copper in marine algae from Thermaikos Gulf of the northern Aegean Sea, Greece, Mar Environ Res 1986; 19: 39–47.

    Article  CAS  Google Scholar 

  20. Ho YB. Ulva lactuca as bioindicator of metal contamination in intertidal waters in Hong Kong. Hydrobiologia, 1990; 203:73–81.

    Google Scholar 

  21. Richardson DHS, Kiang S, Ahmadjian V, Nieboer E. Lead and uranium uptake by lichens. In: Brown DH, ed. Lichen Physiology and Cell Biology New York: Plenum, 1985: 227–246.

    Google Scholar 

  22. Ramelow GJ, Fralick D, Zhao Y. Factors affecting the uptake by aqueous metal ions by dried seaweed biomass. Microbios 1992; 72: 81–93.

    CAS  Google Scholar 

  23. Tong C, Ramelow US, Ramelow GJ. Evaluation of polymeric supports for immobilizing biomass to prepare sorbent materials for metals. Intern J Environ Anal Chem 1994; 56175–191.

    Google Scholar 

  24. Hao Y, Zhao Y, Ramelow GJ. Uptake of metal ions by nonliving biomass derived from marine organisms-effect of pH and chemical treatments. J Environ Sci Health 1994; A29: 2235–2254.

    Google Scholar 

  25. Zhou Y, Hao Y, Ramelow GJ. Evaluation of treatment techniques for increasing the uptake of metal ions from solution by nonliving seaweed algal biomass. Environ Monitor Assess 1994; 33: 61–70.

    Article  Google Scholar 

  26. Richardson DHS, Nieboer E. Lichens and pollution monitoring. Endeavor 1981; 5: 127–133.

    Article  CAS  Google Scholar 

  27. Breuer K, Melzer A. Heavy metal accumulation (lead and cadmium) and ion exchange in three species of Sphagnaceae. I. Main principles of heavy metal accumulation in Sphagnaceae. Oecologia 1990; 82: 461–467.

    Article  Google Scholar 

  28. Heaton C, Frame J, Hardy JK. Lead uptake by Eichhornia crassipes. Toxicol Environ Chem 1986; 11: 125–135.

    Article  CAS  Google Scholar 

  29. Chigbo F, Smith RW, Shore FL Uptake of arsenic, cadmium, lead, and mercury from polluted waters by the water hyacinth Eichhornia crassipes. Environ Pollut Ser A 1982: 27: 31–36.

    Article  CAS  Google Scholar 

  30. Gonzalez H, Lodenius M, Otero M. Water hyacinth as indicator of heavy metal pollution in the tropics. Bull Environ Contam Toxicol 1989; 43: 910–914.

    Article  CAS  Google Scholar 

  31. Hale ME. How to Know the Lichens, 2nd ed. Dubuque, Iowa: Wm. C. Brown, 1979.

    Google Scholar 

  32. Mueller CS, Ramelow GJ, Beck JN. Spatial and temporal variations of heavy metals in sediment cores from the Calcasieu River/Lake Complex. Water, Air, Soil Pollut 1989; 43: 213–230.

    CAS  Google Scholar 

  33. Beck JN, Ramelow GJ. The use of lichen biomass to monitor dissolved metals in natural waters. Bull Environ Contam Toxicol 1990; 44: 302–308.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ramelow, G.J., Yao, H., Zhuang, W. (1998). Metal Ion Binding by Biomass Derived From Nonliving Algae, Lichens, Water Hyacinth Root and Sphagnum Moss. In: Wong, YS., Tam, N.F.Y. (eds) Wastewater Treatment with Algae. Biotechnology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10863-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10863-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10865-9

  • Online ISBN: 978-3-662-10863-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics