Advertisement

The Phylogeny of Prochloron: Is There Numerical Evidence from SAB Values? A Response to Van Valen

  • Hans-Jürgen Bandelt
  • Arndt von Haeseler
Conference paper
Part of the Lecture Notes in Biomathematics book series (LNBM, volume 84)

Abstract

Numerical methods for constructing phylogenies are widely used in molecular biology: often similarity coefficients are derived from (partial) sequence data, and standard clustering algorithms are then applied to produce appropriate dendrograms (Fox et al., 1980; Sneath & Sokal, 1973). Alternative dendrograms based on the same data set may be evaluated by means of numerical criteria. Such criteria do not always seem to be on a sound logical basis: an instance is provided by Van Valen’s methodology of evaluating conflicting estimated phylogenies (Van Valen, 1982); the data in question are S AB values for Prochloron some cyanobacteria and chloroplasts, as reported by Seewaldt & Stackebrandt (1982).

Keywords

Branch Length Tree Topology Numerical Evidence Global Tree Reconstruct Phylogenetic Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bandelt, H.-J. and Dress, A.: Reconstructing the Shape of a Tree from Observed dissimilarity Data. Advance Appl. Math. 7, 309–343 (1986).MathSciNetzbMATHGoogle Scholar
  2. [2]
    Burger-Wiersma, T.; Veenhuis, M.; Korthals, H. J.; Van de Wiel, C. C. M. and Mur, L.R.: A new Prokaryote containing chlorophyll a and b. Nature 320, 262–264 (1986).CrossRefGoogle Scholar
  3. [3]
    Dress, A.; von Haeseler, A. and Krüger, M.: Reconstructing Phylogenetic Treesusing Variants of the Four-Point-Condition. in Studien zur Klassifikation Bd. 17, 299–305 ( Indeks Verlag, Frankfurt/Main, 1986 ).Google Scholar
  4. [4]
    Dress, A. and Krüger M.: Parsimonious Phylogenetic Trees in Metric Spaces and Simulated Annealing. A.vances Appl. Math. 8, 8–37 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Estabrook, G. F.; McMorris, F.R. and Meacham, C.A.: Comparison of Undirected Phylogenetic Trees based on Subtrees of Four Evolutionary Units. Syst. Zool. 34, 193–200 (1985).CrossRefGoogle Scholar
  6. [6]
    Fitch, W. M.: A Non-Sequential Method for Constructing Trees and Hierarchical Classifications. J. Mol. Evol. 18, 30–37 (1981).CrossRefGoogle Scholar
  7. [7]
    Fox, G.E. et al.: The Phylogeny of Prokaryotes. Science 209, 457–463 (1980).Google Scholar
  8. [8]
    Sattath, S. and Tversky, A.: Additive Similarity Trees. Psychometrika 42, 319–345 (1977).CrossRefGoogle Scholar
  9. [9]
    Seewaldt, E. and Stackebrandt, E.: Partial sequence of 16S ribosomal RNA and the phylogeny of Prochloron. Nature 295, 618–620 (1982).CrossRefGoogle Scholar
  10. [10]
    Sneath, P. H. and Sokal, R. R.: Numerical taxonomy ( Freeman and Co., San Francisco, 1973 ).zbMATHGoogle Scholar
  11. [11]
    Van Valen, L. M.: Phylogenies in molecular evolution: Prochloron. Nature 298, 493–494 (1982).CrossRefGoogle Scholar
  12. [12]
    Walsby, A. E.: Origins of chloroplasts. Nature 320, 212 (1986).CrossRefGoogle Scholar
  13. [13]
    Waterman, M. S.; Smith, T. F.; Singh, M. and Beyer, W. A.: Additive Evolutionary Trees. J. Theor. Biol. 64, 199–213 (1977).MathSciNetCrossRefGoogle Scholar
  14. [14]
    Woese, C. R. and Olsen, G. J.: Archaebacterial Phylogeny: Perspectives on the Urkingdoms. J. System. Appl. Microbiol. 7, 161–177 (1986).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Hans-Jürgen Bandelt
    • 1
  • Arndt von Haeseler
    • 2
  1. 1.Fachbereich MathematikCarl-von-Ossietzky-UniversitätOldenburgGermany
  2. 2.Forschungsschwerpunkt MathematisierungUniversität BielefeldBielefeldGermany

Personalised recommendations