Additive-Tree Representations

  • Hervé Abdi
Part of the Lecture Notes in Biomathematics book series (LNBM, volume 84)


Additive-trees are used to represent objects as “leaves” on a tree, so that the distance on the tree between two leaves reflects the similarity between the objects. Formally, an observed similarity δ is represented by a tree-distance d. As such, additive-trees belong to the descriptive multivariate statistic tradition. Additive-tree representations are useful in a wide variety of domains.


Tree Representation Mathematical Psychology Nonmetric Multidimensional Scaling Tree Distance Proximity Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdi, H. (1985) Représentations arborées de l’information verbatim. In J., Wittwer (Ed.): Psycholinguistique Textuelle. Paris: Bulletin de Psychologie.Google Scholar
  2. Abdi, H. (1986a) La mémoire sémantique, une fille de l’intelligence artificielle et de la psychologie. In C., Bonnet, J.C., Hoc, G., Tiberghien (Eds.): Psychologie, Intelligence Artificielle et Automatique. Bruxelles: Mardaga.Google Scholar
  3. Abdi, H. (1986b) Faces, prototypes, and additive tree representations. In H.D., Ellis, M.A., Jeeves, F., Newcombe, A., Young (Eds.): Aspects of Face Processing. Dordrecht: Nijhoff.Google Scholar
  4. Abdi., H. (1989a) ABD-TREE: A complete Apple 2 set of programs for additive-tree representations. In X. Luong (Ed.): Additive-Tree Representations of Textual Data. Nice: Cumfid (Special Issue).Google Scholar
  5. Abdi., H. (1989b) Additive-tree representations of verbatim memory. In X. Luong (Ed.): Additive-Tree Representations of Lexical Data. Nice: Cumfid (Special Issue).Google Scholar
  6. Abdi., H., Barthélemy, J.P., Luong, X. (1984)Tree representations of associative structures in semantic and episodic memory research. In E., Degreef, J. Van Huggenhaut (Eds.): Trends in Mathematical Psychology. New York: Elsevier.Google Scholar
  7. Bandelt, H.J., Dress, A. (1986) Reconstructing the shape of a tree from observed dissimilarity data. Advances in Applied Mathematics, 7, 309–43.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Bandelt, H.J., Dress, A. (1988) Weak hierarchies associated with similarity measures. Unpublished manuscript. Bielefeld University.Google Scholar
  9. Barthélemy, J.P., Guénoche, A. (1988) Arbres et Représentations des Proximités. Paris: Masson.Google Scholar
  10. Barthélemy, J.P., Luong, X. (1986) Représentations arborées des mesures de dissimilarité. Statistiques et Analyse des Données, 5, 20–41.Google Scholar
  11. Barthélemy, J.P., Luong, X. (1987) Sur la topologie d’un arbre phylogénétique: aspects théoriques, algorithmes et applications à l’analyse des données textuelles. Mathématiques et Sciences Humaines, 100, 57–80.zbMATHGoogle Scholar
  12. Bobisud, H.M., Bobisud, A. (1972) A metric for classification. Taxonomy, 21, 607–613.CrossRefGoogle Scholar
  13. Boesch, F.T. (1968) Properties of the distance matrix of a tree. Quaterly of Applied Mathematics, 16, 607–9.MathSciNetGoogle Scholar
  14. Boorman, S.A., Olivier, D.C. (1973) Metrics on spaces of finite trees. Journal of Mathematical Psychology, 10, 26–59.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Brossier, G. (1985) Approximation des dissimilarités par des arbres additifs. Mathématiques et Sciences Humaines, 91, 5–21.MathSciNetzbMATHGoogle Scholar
  16. Brossier, G., LeCalvé, G. (1986) Analyse des dissimilarités sous l’éclairage, application à la recherche d’arbres additifs optimaux. In D., Diday et al (Eds.): Data Analysis and Informatics, IV. Amsterdam: North Holland.Google Scholar
  17. Buneman, P. (1971)The recovery of trees from measures of dissimilarity. In J. Hodson et al (Eds.): Mathematics in the Archaelogical and Historical Sciences. Edinbhurg. Edinbhurg University Press.Google Scholar
  18. Buneman, P. (1974) A note on the metric properties of trees. Journal of Combinatorial Theory, 17, 48–50.MathSciNetzbMATHCrossRefGoogle Scholar
  19. Carroll, J.D., Arabie, P (1980) Multidimensional Scaling. Annual Review of Psychology, 31, 607–49.CrossRefGoogle Scholar
  20. Carroll, J.D., Chang, J.J. (1973) A method for fitting a class of hierarchical tree structure models to dissimilarity data and its application to some body parts data of Miller’s. In Proceedings of the 8I th Annual Convention of the American Psychological Association, 8, 1097–8.Google Scholar
  21. Carroll, J.D., Clark, L.A., Desarbo, W.S. (1984) The representation of three-way proximity data by single and multiple tree structure models. Journal of Classification, 1, 25–74.zbMATHCrossRefGoogle Scholar
  22. Carroll, J.D., Pruzansky, S. (1975) Fitting of hierarchical tree structure models. Paper presented at the US-Japan seminar on Multidimensional Scaling. San-Diego.Google Scholar
  23. Cavalli-Sforza, L.L., Edwards, A.W.F. (1967) Philogenetic analysis models and estimation procedures. American Journal of Human Genetic, 19, 233–57.Google Scholar
  24. Chaiken, S., Dewdney, A.K., Slater, P.D. (1983) An optimal diagonal tree code. SIAM Journal of Applied Discrete Mathematics, 4, 424–9.MathSciNetGoogle Scholar
  25. Colonius, H., Schulze, H.H. (1979) Reprâsentation nichnummerischer Ahlichkeitsdaten durch Baumstrukturen. Psychologische Beitrâge, 21, 98–111.Google Scholar
  26. Colonius, H., Schulze, H.H. (1981) Tree structuress for proximity data. British Journal of Mathematical and Statistical Psychology, 34, 167–80.MathSciNetzbMATHCrossRefGoogle Scholar
  27. Coombs, C.H. (1964) A Theory of Data. New York: Wiley.Google Scholar
  28. Corter, J.E., Tversky, A. (1986) Extended similarity trees. Psychometrika, 51, 429–451.zbMATHCrossRefGoogle Scholar
  29. Coxon, A.P.M. (1982) The User’s Guide to Multidimensional Scaling. London: Heinemann.Google Scholar
  30. Culler, M. (1987) Group actions on R-trees. Proceedings of the London Mathematical Society, 55.Google Scholar
  31. Cunningham, J.P. (1974) Finding an optimal tree realization of a proximity matrix. Paper presented at the Mathematical Psychology Meeting: Ann Arbor.Google Scholar
  32. Cunningham, J.P. (1978) Free trees and bidirectional trees as representations of psychological distances. Journal of Mathematical Psychology, 17, 165–88.MathSciNetzbMATHCrossRefGoogle Scholar
  33. Day, W.H.E. (1985) Analysis of Quartet Dissimilarity Measures between Undirected Phylogenetic Trees. Research report ##CRM-1315. Department of Computer sciences, Montréal (Canada).Google Scholar
  34. De Soete, G. (1983a) Are non-metric additive tree representations of numerical proximity data meaningful? Quality and Quantity, 17, 475–8.CrossRefGoogle Scholar
  35. De Soete, G. (1983b) A least-square algorithm for fitting additive trees to proximity data. Psychometrika, 48, 621–6.CrossRefGoogle Scholar
  36. De Soete, G. (1984) Additive-tree representations of incomplete dissimilarity data. Quality and Quantity, 8, 387–97.Google Scholar
  37. Dewdney, A.K. (1979) Diagonal tree codes. Information and Control, 40, 234–9.MathSciNetzbMATHCrossRefGoogle Scholar
  38. Dobson, J. (1974)Unrooted tree for numerical taxonomy. Journal of applied Probability, 11, 32–42.Google Scholar
  39. Dress, A. (1984) Trees, tight extensions of metric spaces, and cohomological dimension of certain groups. Advances in Mathematics, 53, 321–402.MathSciNetzbMATHCrossRefGoogle Scholar
  40. Dress, A., Krüger M. (1987) Parsimonius phylogenetic trees in metric spaces and simulated annealing. Advances in Applied Mathematics,8 8–37:Google Scholar
  41. Eck, R.V., Dayhoff, M.O. (1966) Atlas of Protein Sequence and Structure. New York: National Biomedical Research Foundation.Google Scholar
  42. Estabrook, G.F., McMorris, F., Meacham, C. (1985) Comparison of undirected phylogenetic trees based on subtree of four evolutionary units. Systematic Zoology, 22, 193–200.CrossRefGoogle Scholar
  43. Farris, J.S. (1973) On comparing the shapes of taxonomic trees, Systematic Zoology, 2, 50–4.CrossRefGoogle Scholar
  44. Fitch, W.M. (1981) A non-sequential method for constructing trees and hierarchical classifications. Journal of Molecular Evolution, 18, 30–7.CrossRefGoogle Scholar
  45. Fumas, G.W. (1980)Objects and their Features: the Metric Representation of Two-Class Data. Thesis, Standford University.Google Scholar
  46. Gati, I., Tversky, A. (1984) Weighting common and distinctive features in perceptual and conceptual judgements. Cognitive Psychology, 16, 341–70.CrossRefGoogle Scholar
  47. Goldstein, A.G., Chance, J.E., Gilbert, B. (1984) Facial stereotypes of good guys and bad guys: a replication and extension. Memory and Cognition, 10, 549–52.Google Scholar
  48. Guénoche, A. (1987) Etude comparative de cinq algorithmes d’approximation des dissimilarités par des arbres à distance additives. Preprint to appear in: Mathématiques et Sciences Humaines Google Scholar
  49. Hodson, F.R., Kendall, D.G., Tautu, P. (Eds.) (1971) Mathematics in the Archaelogical and Historical Sciences. Edinbhurg: Edinbhurg University Press.Google Scholar
  50. Hakimi, S.L., Yau, S.S. (1964) Distance matrix of a graph and its realizibility. Quaterly of Applied Mathematics, 22, 305–17.MathSciNetGoogle Scholar
  51. Hartigan, J.A. (1967) Representations of similarity matrices by trees. Journal of the American Statistical Association, 62, 1140–58.MathSciNetCrossRefGoogle Scholar
  52. Hartigan, J.A. (1975) Clustering Algorithms. New York: Wiley.zbMATHGoogle Scholar
  53. Henley, N.M. (1969) A psychological study of the semantics of animal terms. Journal of Verbal Learning and Verbal Behavior, 8, 176–84.CrossRefGoogle Scholar
  54. Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A. (1971) Foundations of measurement. New York: Academic Press.zbMATHGoogle Scholar
  55. Luce, R.D., Galanter, E. (1963) Psychophysical scaling. In R.D. Luce, R.R. Luce, E. Galanter (Eds.): Handbook of Mathematical Psychology. New York: Wiley.Google Scholar
  56. Luong, X. (1983) Voisinage Lâche, Score et Famille Scorante. Multigraph, Besancon (France).Google Scholar
  57. Luong, X. (1988) Méthodes en Analyse Arborée: Algorithmes et Applications. Thesis: Paris V University.Google Scholar
  58. McMorris, F.R. (1987) Axioms for consensus functions on undirected phylogenetic trees. Mathematical Biosciences, 74, 17–21.MathSciNetCrossRefGoogle Scholar
  59. Meacham, C.A. (1981a) A manual method for character compatibility analysis. Taxon, 30, 591–600.CrossRefGoogle Scholar
  60. Meacham, C.A. (1981b) A probability measure for character compatibility, Mathematical Biosciences, 57, 1–18.MathSciNetzbMATHCrossRefGoogle Scholar
  61. Osherson, D.N. (1987) New axioms for the contrast model of similarity. Journal of Mathematical Psychology, 31, 93–103.MathSciNetzbMATHCrossRefGoogle Scholar
  62. Patrinos, A.N., Hakimi, S.L. (1972) The distance matrix of a graph and its tree realization. Quaterly of Applied Mathematics, 30, 255–69.MathSciNetzbMATHGoogle Scholar
  63. Phipps, J.B. (1971) Dendogram Topology. Systematic Zoology, 20, 306–8.CrossRefGoogle Scholar
  64. Pruzansky, S., Tversky, A., Carroll, J.D. (1982)Spatial versus tree representations of proximity data. Psychometrika, 47, 3–24.Google Scholar
  65. Roberts, F.S. (1979) Measurement Theory. New York: Addison-Wesley.zbMATHGoogle Scholar
  66. Robinson, D.F. (1971) Comparison of labeled trees of valency three. Journal of Combinatorial Theory (B Series), 11, 105–119.CrossRefGoogle Scholar
  67. Robinson, D.F., Foulds, L.R. (1981) Comparison of phyologenetic trees. Mathematical Biosciences, 53, 131–47.MathSciNetzbMATHCrossRefGoogle Scholar
  68. Rosch, E. (1973) On the internal structure of perceptual and semantic categories. In T.E., Moore (Ed.): Cognitive Development and the Acquisition of Language. New York: Academic Press.Google Scholar
  69. Rosch, E. (1975) Cognitive representations of semantic categories. Journal of Experimental Psychology: General, 104, 192–233.CrossRefGoogle Scholar
  70. Rosch, E. (1983) Prototype classification and logical classification: the two systems. In E.K. Scholnik (Ed.): New Trends in Conceptual Representations. Hillsdale: Eribaum.Google Scholar
  71. Roux, M. (1986) Représentation d’une dissimilarité par un arbre aux arêtes additives. In D. Diday et al (Eds.): Data Analysis and Informatics IV. Amsterdam: North Holland.Google Scholar
  72. Sattath, S. (1976) An equivalence theorem. Unpublished note, Hebrew University (Israel).Google Scholar
  73. Sattath, S., Tversky, A. (1977) Additive similarity trees. Psychometrika, 42, 319–45.CrossRefGoogle Scholar
  74. Shepard, R.N. (1974)Representation of structure in similarity data: problems and prospects. Psychometrika, 39, 373–421.Google Scholar
  75. Shepard, R.N. (1980) Multidimensional scaling, tree-fitting and clustering. Science, 210, 390–8.MathSciNetzbMATHCrossRefGoogle Scholar
  76. Shepard, R.N., Romney, A.K., Nerlove, S.B. (Eds.) (1974) Multidimensional Scaling (2 Vol.). New York: Academic Press.Google Scholar
  77. Simbes-Prereira, J.M.S. (1967)A note on the tree-realizability of a distance matrix. Journal of Combinatorial Theory, 6, 303–10.Google Scholar
  78. Smolenskii, Y.A. (1963) A method for linear recording of graphs. USSR Computional Mathematics and Mathematical Physics, 2, 396–7.MathSciNetCrossRefGoogle Scholar
  79. Suppes, P.,Zinnes, J.L. (1963) Basic measurement theory. In R.D., Luce, R.R. Bush, E. Galanter (Eds.): Handbook of Mathematical Psychology. New York: Wiley.Google Scholar
  80. Turner, J., Kautz, W.H. (1970) A survey of progress in graph theory in the Soviet Union. SIAM Review, 12, 17.MathSciNetCrossRefGoogle Scholar
  81. Tversky, A. (1977) Features of similarity. Psychological Review, 84, 327–52.CrossRefGoogle Scholar
  82. Tversky, A., Gati, I. (1978) Studies of similarity. In E. Rosch, B.B. Llyod (Eds.): Cognition and Categorization. Hillsdale: Eribaum.Google Scholar
  83. Tversky, A., Gati, I. (1982) Similarity, Separability and the triangle inequality. Psychological Review, 89, 123–54.CrossRefGoogle Scholar
  84. Waterman, M.S., Smith, T.F. (1978) On the similarity of dendrograms. Journal of Theoretical Biology, 73, 789–800.MathSciNetCrossRefGoogle Scholar
  85. Waterman, M.S., Smith, T.F., Singh, M., Beyer, W.A. (1977) Additive evolutionary trees. Journal of theoretical Biology, 64, 199–213.MathSciNetCrossRefGoogle Scholar
  86. Zaretskii, K. (1965) Constructing a tree on the basis of a set of distance between the hanging vertices (in Russian). Uspekhi Mat. Nauk., 20, 90–2.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Hervé Abdi
    • 1
  1. 1.University of BourgogneDijonFrance

Personalised recommendations