Trees IV pp 321-341 | Cite as

Quercus robur L. (Pedunculate Oak)

  • J. A. Manzanera
  • M. A. Bueno
  • J. A. Pardos
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 35)


The genus Quercus consists of about 450 species distributed throughout North temperate regions, the Mediterranean basin, and some montane tropics and subtropics. Although recent phylogenetic studies have provided the basis for an infrageneric classification of the genus, the species distribution in the Quercus complex is still a matter of debate (Nixon 1993). Hybridization and gene introgression produce many morphologically intermediate forms between pure parental species, as in Q. robur and Q. petraea. Little difference was found between these two species even in ribosomal DNA and chloroplast DNA polymorphism (Petit et al. 1993).


Somatic Embryo Somatic Embryogenesis Adventitious Root Zygotic Embryo Shoot Proliferation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bellarosa R (1989) Oak (Quercus spp.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 5. Trees, II. Springer, Berlin Heidelberg New York, pp 387–401Google Scholar
  2. Bennett LK, Davies FT Jr (1986) In vitro propagation of Quercus shumardii seedlings. HortScience 21 (4): 1045–1047Google Scholar
  3. Binding H, Nehls R (1977) Regeneration of isolated protoplasts to plants in Solanum dulcamara L. Z Pflanzenphysiol 85: 279–280Google Scholar
  4. Borzan Z (1993) Grafting of oaks with variegated leaves. Ann Sci For 50 (Suppl 1): 330s-335sGoogle Scholar
  5. Bueno MA, Astorga R, Manzanera JA (1992) Plant regeneration through somatic embryogenesis in Quercus suber. Physiol Plant 85: 30–34CrossRefGoogle Scholar
  6. Chalupa V (1984) In vitro propagation of oak (Quercus robur L.) and linden (Tilia cordata Mill.). Biol Plant 26(5): 374–377CrossRefGoogle Scholar
  7. Chalupa V (1990) Plant regeneration by somatic embryogenesis from cultured immature embryos of oak (Quercus robur L.) and linden (Tilia cordata Mill.). Plant Cell Rep 9: 398–401CrossRefGoogle Scholar
  8. Chalupa V (1993) Vegetative propagation of oak (Quercus robur and Q petraea) by cutting and tissue culture. Ann Sci For 50 (Suppl 1): 295s-307sCrossRefGoogle Scholar
  9. Civínová B, Sladky Z (1987) A study of the regeneration capacity of oak (Quercus robur L.). Scripta Fac Sci Nat Univ Purk Brun 17(3–4): 103–110Google Scholar
  10. Dunstan DJ, Short KC (1977) Improved growth of tissue cultures of the onion Allium cepa. Physiol Plant 41: 70–72CrossRefGoogle Scholar
  11. Evans J (1984) Silviculture of broadleaved woodland. For Comm Bull (Lond) 62: 232 ppGoogle Scholar
  12. Evers PW, Donkers J, Prat A, Vermeer E (1988) Micropropagation of forest trees through tissue culture. Pudoc, Wageningen, 84 ppGoogle Scholar
  13. Evers PW, Vermeer E, Eeden S van (1993) Rejuvenation of Quercus robur. Ann Sci For 50 (Suppl 1): 330s–335sCrossRefGoogle Scholar
  14. Favre JM, Juncker B (1987) In vitro growth of buds taken from seedlings and adult plant material in Quercus robur L. Plant Cell Tissue Organ Cult 8: 49–60CrossRefGoogle Scholar
  15. Favre JM, Scalbert A, Herve du Penhoat CLM (1993) Quercus spp. (oak): in vitro culture and production of tannins. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 24. Medicinal and aromatic plants V. Springer, Berlin Heidelberg New York, pp 300–312Google Scholar
  16. Féraud-Keller C, Espagnac H (1989) Conditions d’apparition d’une embryogénèse somatique sur des cals issus de la culture de tissues foliaires du chêne vert (Quercus ilex). Can J Bot 67: 1066–1070Google Scholar
  17. Gebhardt K, Frühwacht-Wilms U, Weisgerber H (1993) Micropropagation and restricted-growth storage of adult oak genotypes. Ann Sci For 50 (Suppl 1): 323s-329sCrossRefGoogle Scholar
  18. Gingas VM, Lineberger RD (1989) Asexual embryogenesis and plant regeneration in Quercus. Plant Cell Tissue Organ Cult 17: 191–203CrossRefGoogle Scholar
  19. González-Benito ME, Pérez-Ruiz C (1992) Cryopreservation of Quercus faginea embryonic axes. Cryobiology 29: 685–690CrossRefGoogle Scholar
  20. Gresshoff PM, Doy CH (1972) Development and differentiation of haploid Lycopersicon esculentum (tomato). Planta 107: 161–170CrossRefGoogle Scholar
  21. Guthke J, Spethmann W (1993) Physiological and pathological aspects of long-term storage of acorns. Ann Sci For 50 (Suppl): 384–387CrossRefGoogle Scholar
  22. Hakman I, Arnold S von (1988) Somatic embryogenesis and plant regeneration from suspension cultures of Picea glauca (white spruce). Physiol Plant 72: 579–587CrossRefGoogle Scholar
  23. Jacquiot C (1952) Sur les phénomènes d’histogenèse observés dans des cultures in vitro de tissu cambial de chênes (Quercus sessiliflora Sm., Q. pedunculata Ehr., Q. suber L.). C R Hebd Seances Acad Sci Paris 234: 1468–1470Google Scholar
  24. Jörgensen J (1993) Embryogenesis in Quercus petraea. Ann Sci For 50 (Suppl 1): 344s–350sCrossRefGoogle Scholar
  25. Krajci I, Gross GG (1987) Formation of gallotannins in callus cultures from oak (Quercus robur). Phytochemistry 26(1): 141–143CrossRefGoogle Scholar
  26. Lee SK (1977) On the asymptotic variances of u-terms in log-linear models of multidimensional contingency tables. J Am Statist Assoc 72: 412–419Google Scholar
  27. Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18: 100–127CrossRefGoogle Scholar
  28. Lloyd G, McCown B (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Proc Int Plant Propagators’ Soc 30: 421–427Google Scholar
  29. Maâtaoui ME El, Espagnac H (1987) Néoformation de structures de type embryons somatiques sur des cultures de tissues de chêne liège (Quercus suber L.). C R Acad Sci Paris 304 Série III (3): 83–88Google Scholar
  30. Mac Ant Saoir S, Kabrianis M (1993) Establishment of explants from 200-year-old Quercus petraea in culture. Ann Sci For 50 (Suppl 1): 336s–339sGoogle Scholar
  31. Manzanera JA (1990) Propagación vegetativa de plántulas de alcornoque (Quercus suber L.) por cultivo in vitro. Investigación Agraria. Prod Prot Veg 5(3): 371–382Google Scholar
  32. Manzanera JA (1992) Inducción de embriogenesis somatica en roble (Quercus robur L.). Invest Agrar Sist Recursos For 1(1): 73–81Google Scholar
  33. Manzanera JA, Pardos JA (1990) Micropropagation ofjuvenile and adult Quercus suber L. Plant Cell Tissue Organ Cult 21: 1–8CrossRefGoogle Scholar
  34. Manzanera JA, Astorga R, Bueno MA (1993) Somatic embryo induction and germination in Quercus suber L. Silvae Genet 42(2–3): 90–93Google Scholar
  35. Meier-Dinkel A (1987) In vitro vermehrung und weiterkultur von stieleiche (Quercus robur L.) und Traubeneiche (Quercus petraea (Matt.) Liebl.). Allg Forst Jagdztg 158: 199–204Google Scholar
  36. Meier-Dinkel A, Becker B, Duckstein D (1993) Micropropagation and ex vitro rooting of several clones of late-flushing Quercus robur L. Ann Sci For 50: (Suppl 1): 319s–322sCrossRefGoogle Scholar
  37. Molinas ML, Verdaguer D (1993) Lignotuber ontogeny in the cork-oak (Quercus suber; Fagaceae). II. Germination and young seedling. Am J Bot 80(2): 182–191CrossRefGoogle Scholar
  38. Moon HK, Yi SS (1993) Cutting propagation of Q. acutissima clones after rejuvenation through serial grafting. Ann Sci For 50 (Suppl 1): 314s-318sCrossRefGoogle Scholar
  39. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497CrossRefGoogle Scholar
  40. Nixon KC (1993) Infrageneric classification of Quercus (Fagaceae) and typification of sectional names. Ann Sci For 50 (Suppl 1): 25s-34sCrossRefGoogle Scholar
  41. Pardos JA (1981) In vitro plant formation from stem pieces of Quercus suber L. Proc Coll Int sur la Cult in vitro des Essences For IUFRO (AFOCEL, ed), Fontainebleau, France, pp 186–190Google Scholar
  42. Perrin H (1954) Sylviculture. Tome II: Le traitement des Fôrets. Théorie et practique des techniques sylvicoles. Ecole Nationale des Eaux et Forêts, Nancy, 409 ppGoogle Scholar
  43. Petit RJ, Wagner DB, Kremer A (1993) Ribosomal DNA and chloroplast DNA polymorphisms in a mixed stand of Quercus robur and Q. petraea. Ann Sci For 50 (Suppl 1): 41s-47sCrossRefGoogle Scholar
  44. Pevalek-Kozlina B, Jelaska S (1986) In vitro growth and development of oaks (Quercus robur and Quercus petraea). Acta Bot Croat 45: 55–61Google Scholar
  45. Quatrano RS (1987) The role of hormones during seed development. In: Davies PJ (ed) Plant hormones and their role in plant growth and development. Martinus Nijhoff, Dordrecht, pp 494–514CrossRefGoogle Scholar
  46. Roberts DR (1991) Abscisic acid and mannitol promote early development, maturation and storage protein accumulation in somatic embryos of interior spruce. Physiol Plant 83: 247–254CrossRefGoogle Scholar
  47. Roberts EH, King MW (1980) Storage of recalcitrant seeds. In: Withers LA, Williams JT (eds) Crop genetic resources: the conservation of difficult material. Int Union Biol Sci Ser B42: 39–48Google Scholar
  48. Romano A, Noronha C, Martins-Louçâo MA (1992) Influence of growth regulators on shoot proliferation in Quercus suber L. Ann Bot 70: 531–536Google Scholar
  49. San-José MC, Vieitez AM, Vieitez E (1985) Establecimiento y multiplicación in vitro de brotes del género Quercus. Fyton 45(19): 31–40Google Scholar
  50. San-José MC, Ballester A, Vieitez AM (1988) Factors affecting in vitro propagation of Quercus robur L. Tree Physiol 4: 281–290PubMedCrossRefGoogle Scholar
  51. San-José MC, Vieitez AM, Ballester A (1990) Clonai propagation of juvenile and adult trees of sessile oak by tissue culture techniques. Silvae Genet 39(2): 50–54Google Scholar
  52. Scalbert A, Monties B, Favre JM (1988) Polyphenols of Quercus robur: adult tree and in vitro-grown calli and shoots. Phytochemistry 27(11): 3483–3488CrossRefGoogle Scholar
  53. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50: 199–204CrossRefGoogle Scholar
  54. Schier GA (1983) Vegetative regeneration of Gambel oak and Chokecherry from excised rhizomes. For Sci 29(3): 499–502Google Scholar
  55. Schwarz OJ (1987) Plant growth regulator effects in the in vitro propagation of three hardwood genera: Castanea, Juglans, and Quercus. Plant Growth Regul 6: 113–135CrossRefGoogle Scholar
  56. Schwarz OJ, Schlarbaum SE (1993) Axillary bud proliferation of 2 North American oak species: Quercus alba and Quercus rubra. Ann Sci For 50 (Suppl 1): 340s–343sCrossRefGoogle Scholar
  57. Seckinger GR, McCown BH, Struckmeyer BE (1979) Production of anomalous structures in Quercus rubra L. callus cultures. Am J Bot 66: 993–996CrossRefGoogle Scholar
  58. Shoyama Y, Sasaki Y, Nishioka I, Suzaki T (1992) Clonal propagation of oak (Quercus acutissima Carruth). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 18. High-tech and micropropagation II, Springer, Berlin Heidelberg New York, pp 179–192Google Scholar
  59. Srivastava PS, Steinhauer A (1982) In vitro culture of embryo segments of Quercus lebani: organogenesis and callus growth as a differential response to experimental conditions. Z Pflanzenphysiol 106: 93–96Google Scholar
  60. Vicioso C (1950) Revision del género Quercus en España. IFIE, Minist Agric, 194 ppGoogle Scholar
  61. Vieitez AM, San-José MC, Vieitez E (1985) In vitro plantlet regeneration from juvenile and mature Quercus robur L. J Hortic Sci 60(1): 99–106Google Scholar
  62. Vieitez AM, Pintos F, San-José MC, Ballester A (1993) In vitro shoot proliferation determined by explant orientation of juvenile and mature Quercus rubra L. Tree Physiol 12: 107–117PubMedCrossRefGoogle Scholar
  63. Volkaert H, Schoofs J, Pieters A, De Langhe E (1990) Influence of explant source on in vitro axillary shoot formation in oak seedlings. Tree Physiol 6: 87–93PubMedCrossRefGoogle Scholar
  64. Walton DC (1980) Biochemistry and physiology of abscisic acid. Annu Rev Plant Physiol 31: 453–489CrossRefGoogle Scholar
  65. Zeevart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39: 439–473CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • J. A. Manzanera
    • 1
  • M. A. Bueno
    • 2
  • J. A. Pardos
    • 1
  1. 1.Lab. Anatomía, Fisiología Vegetal y Genética, Dept. Silvopascicultura, E.T.S.I. Montes, Universidad Politécnica de MadridCiudad Universitaria s.n.MadridSpain
  2. 2.I.N.I.A.CIFORMadridSpain

Personalised recommendations