Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 254))

Abstract

Nuclear hormone receptor mediated transcription has become a paradigm for the study of how gene activation and gene repression are regulated (for review see Mangelsdorf et al. 1995; Tenbaum and Baniahmad 1997). The focus of this review is to highlight recent work from several groups that addresses the mechanisms by which nuclear hormone receptors can function as transcription repressors. Many studies over the past several years have established that nuclear receptors activate gene expression in response to ligand binding and repress gene expression in its absence (for reviews see Shibata et al. 1997; Torchia et al. 1998; Xu et al. 1999). In the presence of ligand, a series of molecular interactions occur resulting in the recruitment of a multiprotein complex that includes the coactivators CBP/p300, pCAF, and p160 proteins (SRC-1, GRIP1/TIF2, ACTR/RAC3/pCIP) (see reviews by Minucci and Pelicci 1999; Xu et al. 1999; Torchia et al. 1998). As these proteins all have intrinsic histone acetyltransferase (HAT) activity (Ogryzko et al. 1996; Spencer et al. 1997; Bannister and Kouzarides 1996), a hallmark of igand-induced transcriptional activation by nuclear hormone receptors is the ability of this complex to alter the local chromatin structure through histone acetylation. Indeed, recent studies demonstrate that estrogen receptor (ER) and retinoic acid receptor (RAR) target gene promoters undergo histone hyperacetylation in response to ligand and that the HAT activity of CBP/p300 protein is required (Chen et al. 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aasland R, Stewart AF, Gibson T (1996) The Sant domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional corepressor N-CoR and TFIIIB. TIBS 21: 87–88

    PubMed  CAS  Google Scholar 

  • Adams M, Reginato MJ, Shao D, Lazar MA, Chatterjee VK (1997) Transcriptional activation by peroxisome proliferator-activated receptor gamma is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J Biol Chem 272: 5128–5132

    PubMed  CAS  Google Scholar 

  • Alland L, Muhle R, Hou H, Potes J, Chin L, Schreiber-Agus N, DePinho RA (1997) Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387: 49–55

    PubMed  CAS  Google Scholar 

  • Ayer DE, Lawrence QA, Eisenman RN (1995) Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80: 767–776

    PubMed  CAS  Google Scholar 

  • Bailey PJ, Dowhan DH, Franke K, Burke LJ, Downes M, Muscat GE (1997) Transcriptional repression by COUP-TF II is dependent on the C-terminal domain and involves the N-CoR variant, RIP13delta 1. J Steroid Biochem Mol Biol 63: 165–174

    PubMed  CAS  Google Scholar 

  • Bailey P, Downes M, Lau P, Harris J, Chen SL, Hamamori Y, Sartorelli V, Muscat GEO (1999) The nuclear receptor corepressor N-CoR regulates differentiation: N-CoR directly interacts with MyoD. Mol Endocrinol 13: 1155–1168

    PubMed  CAS  Google Scholar 

  • Bannister AJ, Kouzarides T (1996) The CBP coactivator is a histone acetyltransferase. Nature 384: 641–643

    PubMed  CAS  Google Scholar 

  • Bunone G, Briand PA, Miksicek RJ, Picard D (1996) Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO 15: 2174–2183

    CAS  Google Scholar 

  • Burke LJ, Downes M, Laudet V, Muscat GE (1998) Identification and characterization of a novel corepressor interaction region in RVR and Rev-erbA alpha. Mol Endocrinol 12: 248–262

    PubMed  CAS  Google Scholar 

  • Camp HS, Tafuri SR (1997) Regulation of peroxisome proliferator-activated receptor gamma activity by mitogen-activated protein kinase. J Biol Chem 272: 10811–10816

    PubMed  CAS  Google Scholar 

  • Carmen AA, Rundlett SE, Grunstein M (1996) The HDA1 and HDA3 are components of a yeast histone deacetylase ( HAD) complex. J Biol Chem 271: 15837–15844

    Google Scholar 

  • Casanova J, Helmer E, Selmi-Ruby S, Qi JS, Au-Fliegner M, Desai-Yanjik V, Koudinova J, Yarm F, Raaka BM, Samuels HH (1994) Functional evidence for ligand-dependent dissociation of thyroid hormone and retinoic acid receptors from an inhibitory cellular factor. Mol Cell Biol 14: 5756–5765

    PubMed  CAS  Google Scholar 

  • Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377: 454–457

    PubMed  CAS  Google Scholar 

  • Chen DJ, Umesono K, Evans RM (1996) SMRT isoforms mediate repression and anti-repression of nuclear receptor heterodimers. Proc Natl Acad Sci 93: 7567–7571

    PubMed  CAS  Google Scholar 

  • Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L, Privalsky ML, Nakatani Y, Evans RM (1997) Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with p/CAF and CBP/p300. Cell 90: 569–580

    PubMed  CAS  Google Scholar 

  • Chen H, Lin RJ, Xie W, Wilpitz D, Evans RM (1999) Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 98: 675–686

    PubMed  CAS  Google Scholar 

  • Crawford PA, Dorn C, Sadovsky Y, Milbrandt J (1998) Nuclear receptor DAX-1 recruits nuclear receptor corepressor N-CoR to steroidogenic factor 1. Mol Cell Biol 18: 2949–2956

    PubMed  CAS  Google Scholar 

  • Damm K, Evans RM (1993) Identification of a domain required for oncogenic activity and transcriptional suppression by v-erbA and thyroid-hormone receptor alpha. Proc Natl Acad Sci 90: 10668–10672

    PubMed  CAS  Google Scholar 

  • Darimont BD, Wagner RL, Apriletti JW, Stallcup MR, Kushner PJ, Baxter JD, Fletterick RJ, Yamamoto KR (1998) Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev 12: 3343–3356

    PubMed  CAS  Google Scholar 

  • Dhordain P, Albagli O, Lin RJ, Ansieau S, Quief S, Leutz A, Kerckaert JP, Evans RM, Leprince D (1997) Corepressor SMRT binds the BTB/POZ repressing domain of the LAZ3/BCL6 oncoprotein. Proc Natl Acad Sci 94: 10762–10767

    PubMed  CAS  Google Scholar 

  • Downes M, Burke LJ, Bailey PJ, Muscat GE (1996) Two receptor interaction domains in the corepressor, N-CoR/RIP13, are required for an efficient interaction with Rev-erbA alpha and RVR: physical association is dependent on the E region of the orphan receptors. Nucleic Acids Res 24: 4379–4386

    CAS  Google Scholar 

  • Dressel U, Thormeyer D, Altincicek B, Paululat A, Eggert M, Schneider S, Tenbaum AP, Renkawitz R, Bahniahmad A (1999) Alien, a highly conserved protein with characteristics of a corepressor for members of the nuclear hormone receptor superfamily. Mol Cell Biol 19: 3383–3394

    PubMed  CAS  Google Scholar 

  • Emiliani S, Fischle W, Van Lint C, Ab-Abed Y, Verdin E (1998) Characterization of a human RPD3 ortholog, HDAC3. Proc Natl Acad Sci 95: 2795–2800

    PubMed  CAS  Google Scholar 

  • Fischle W, Emiliani S, Hendzel MJ, Nagase T, Nomura N, Voelter W, Verdin E (1999) A new family of human histone deacetylases related to Saccharomyces cerevisiae HDA1p. J Biol Chem 274: 11713–11720

    PubMed  CAS  Google Scholar 

  • Fondell JD, Brunel F, Hisatake K, Roeder RG (1996) Unliganded thyroid hormone receptor alpha can target TATA-binding protein for transcriptional repression. Mol Cell Biol 16: 281–287

    PubMed  CAS  Google Scholar 

  • Fondell JD, Roy AL, Roeder RG (1993) Unliganded thyroid hormone receptor inhibits formation of a functional preinitiation complex: implications for gene repression. Genes Dev 7: 1400–1410

    PubMed  CAS  Google Scholar 

  • Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG, Lazar MA (1998) Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol 18: 7185–7191

    PubMed  CAS  Google Scholar 

  • Grignani F, Dc Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthhardt M, Ferrara FF, Zamir I, Seiser C. Grignani F, Lazar MA, Minucci S, Pelicci PG (1998) Fusion proteins of the retinoic acid receptor-7 recruit histone deacetylase in promyelocytic leukemia. Nature 391: 815–818

    CAS  Google Scholar 

  • Grozinger CM, Hassig CA, Schreiber SL (1999) Three proteins define a class of human histone deacetylases related to yeast Hdalp. Proc Natl Acad Sci 96: 4868–4873

    PubMed  CAS  Google Scholar 

  • Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389: 349–352 Hammer GD, Krylova I, Zhang Y, Darimont BD, Simpson K, Weigel NL, Ingraham HA (1999) Phosphorylation of the nuclear receptor SF-1 modulates cofactor recruitment: integration of hormone signaling in reproduction and stress. Mol Cell 3: 521–526

    Google Scholar 

  • Harding HP, Atkins GB, Jaffe AB, Seo WJ, Lazar MA (1997) Transcriptional activation and repression by RORalpha, an orphan nuclear receptor required for cerebellar development. Mol Endocrinol 11: 1737–1746

    PubMed  CAS  Google Scholar 

  • Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE (1997) Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89: 341–347

    PubMed  CAS  Google Scholar 

  • He LZ, Guidez F, Tribioli C, Peruzzi D, Ruthardt M, Zelent A, Pandolfi PP (1998) Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nat Genet 18: 126–135

    PubMed  CAS  Google Scholar 

  • Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387: 733–736

    PubMed  CAS  Google Scholar 

  • Heinzel T, Lavinsky RM, Mullen TM, Soderstrom M, Laherty C, Torchia J, Yang WM, Brard G, Ngo S, Davie J, Seto E, Eisenman E, Rose DW, Glass CK, Rosenfeld MG (1997) A complex containing N-CoR, mSin3, and histone deacetylase mediates transcriptional repression. Nature 387: 43–48

    PubMed  CAS  Google Scholar 

  • Hong SH, David G, Wong CW, Dejean A, Privalsky ML (1997) SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor alpha ( RARalpha) and PLZF-RARalpha oncoproteins associated with acute promyelocytic leukemia. Proc Natl Acad Sci 94: 9028–9033

    PubMed  CAS  Google Scholar 

  • Hong SH, Wong CW, Privalsky ML (1998) Signaling by tyrosine kinases negatively regulates the interaction between transcription factors and SMRT (silencing mediator of retinoic acid and thyroid hormone receptor) corepressor. Mol Endocrinol 12: 1161–1171

    PubMed  CAS  Google Scholar 

  • Hong H, Kohli K, Trivedi A, Johnson DL, Stallcup MR (1996) G RIP I, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc Natl Acad Sci 93: 4948–4952

    PubMed  CAS  Google Scholar 

  • Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamai Y, Soderstrom M, Glass CK, Rosenfeld MG (1995) Ligand independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377: 397–403

    PubMed  CAS  Google Scholar 

  • Hu E, Kim JB, Sarraf P, Spiegelman BM (1996) Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science 274: 2100–2103

    PubMed  CAS  Google Scholar 

  • Hu X, Lazar MA (1999) The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 402: 93–96

    PubMed  CAS  Google Scholar 

  • Huang EY, Zhang J, Miska EA, Guenther MG, Kouzarides T, Lazar MA (2000) Nuclear receptor corepressors partner with class 11 histone deacetylases in a Sin3-independent repression pathway. Genes Dev 14

    Google Scholar 

  • Huynh KD, Bardwell VJ (1998) The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRT. Oncogene 17: 2473–2484

    PubMed  CAS  Google Scholar 

  • Jackson TA, Richer JK, Bain DL, Takimoto GS, Tung L, Horwitz KB (1997) The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corcpressors N-CoR or SMRT. Mol Endocrinol 11: 693–705

    PubMed  CAS  Google Scholar 

  • Kadosh D, Struhl K (1998) Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Mol Cell Biol 18: 5121–5127

    PubMed  CAS  Google Scholar 

  • Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK, Rosenfeld MG (1996) A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85: 403–414

    PubMed  CAS  Google Scholar 

  • Kao HY, Ordentlich P, Koyano-Nakagawa N, Tang Z, Downes M, Kintner CR, Evans RM, Kadesch T (1998) A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev 12: 2269–2277

    PubMed  CAS  Google Scholar 

  • Kao HY, Downes M, Ordentlich P, Evans RM (2000) Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev 14

    Google Scholar 

  • Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, et al (1995) Activation of the estrogen receptor through phosphorylation by mitogenactivated protein kinase. Science 270: 1491–1494

    PubMed  CAS  Google Scholar 

  • Knoepfler PS, Eisenman RN (1999) Sin meets NuRD and other tails of repression. Cell 99: 447–450

    PubMed  CAS  Google Scholar 

  • Laherty CD, Yang WM, Sun JM, Davie JR, Seto E, Eisenman RN (1997) Histone deacetylases associated with the Sin3 co-repressor mediate Mad transcriptional repression. Cell 89: 349–356

    PubMed  CAS  Google Scholar 

  • Laherty CD, Billin AN, Lavinsky RM, Yochum GS, Bush AC, Sun JM, Mullen TM, Davie JR, Rose DW, Glass CK, Rosenfeld MG (1998) SAP30, a component of the mSin3 corepressor complex involved in N-CoR mediated repression by specific transcription factors. Mol Cell 2: 33–42

    PubMed  CAS  Google Scholar 

  • Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen TM, Schiff R, Del-Rio AL, Ricote M, Ngo S, Gemsch J, Hilsenbeck SG, Osborne CK, Glass CK, Rosenfeld MG, Rose DW (1998) Diverse signalling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci 95: 2920–2925

    PubMed  CAS  Google Scholar 

  • Lin RJ, Nagy L, Inoue S, Shao W, Miller WH, Evans RM (1998) Role of the histone deacetylase complex in acute promyelocytic leukemia. Nature 391: 811–814

    PubMed  CAS  Google Scholar 

  • Luo K, Stroschein SL, Wang W, Chen D, Martens E, Zhou S, Zhou Q (1999) The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev 13: 2196–2206

    PubMed  CAS  Google Scholar 

  • Lutterbach B, Westendorf JJ, Linggi B, Patten A, Moniwa M, Davie JR, Huynh KD, Bardwell VJ, Lavinsky RM, Rosenfeld MG, Glass C, Seto E, Hiebert SW (1998) ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol Cell Biol 18: 7176–7184

    PubMed  CAS  Google Scholar 

  • Maldonado E, Hampsey M, Reinberg D (1999) Repression: targeting the heart of the matter. Cell 99: 455–458

    PubMed  CAS  Google Scholar 

  • Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: The second decade. Cell 83: 835–839

    PubMed  CAS  Google Scholar 

  • McInerney EM, Rose DW, Flynn SE, Westin S, Mullen TM, Krones A, Inostroza J, Torchia J, Nolte RT, Assa-Munt N, Milburn MV, Glass CK, Rosenfeld MG (1998) Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev 12: 3357–3368

    PubMed  CAS  Google Scholar 

  • Minucci S, Pelicci PG (1999) Retinoid receptors in health and disease: co-regulators and the chromatin connection. Cell Developmental Biology 10: 215–225

    CAS  Google Scholar 

  • Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T (1999) HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO 18: 5099–5107

    CAS  Google Scholar 

  • Muscat GEO, Burke LJ, Downes M (1998) The corepressor N-CoR and its variants RIP13a and RIP1341 directly interact with the basal transcription factors, TFIIB, TAF1132 and TAF1170. Nucl Acid Res 26: 2899–2907

    CAS  Google Scholar 

  • Muto A, Hoshino H, Madisen L, Yanai N, Obinata M, Karasuyama H, Hayashi N, Nakauchi H, Yamamoto M, Groudine M, Igarashi K (1998) Identification of Bach2 as a B-cell-specific partner for small maf proteins that negatively regulate the immunoglobulin heavy chain gene 3’ enhancer. EMBO 17: 5734–5743

    CAS  Google Scholar 

  • Nagy L, Kao HY, Love JD, Li C, Banayo E, Gooch JT, Chatterjee VK, Evans RM, Schwabe JWR (1999) Mechanism of corepressor binding and release from nuclear hormone receptors. Genes Dev 13: 3209–3216

    PubMed  CAS  Google Scholar 

  • Nagy L, Kao HY, Chakravarti D, Lin R, Hassig C, Ayer D, Schreiber S, Evans RM (1997) Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89: 373–380

    PubMed  CAS  Google Scholar 

  • Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, Rosenfeld MG, Willson TM, Glass CK, Milburn MV (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395: 137–143

    PubMed  CAS  Google Scholar 

  • Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953–959

    PubMed  CAS  Google Scholar 

  • Ordentlich P, Downes M, Xie W, Genin A, Spinner NB, Evans RM (1999) Unique forms of human and mouse nuclear receptor corepressor SMRT. Proc Natl Acad Sci 96: 2639–2644

    PubMed  CAS  Google Scholar 

  • Park EJ, Schroen DJ, Yang M, Li H, Li L, Chen JD (1999) SMRTe, a silencing mediator for retinoid and thyroid hormone receptors-extended isoform that is more related to the nuclear receptor corepressor. Proc Natl Acad Sci 96: 3519–3524

    PubMed  CAS  Google Scholar 

  • Perissi V, Staszewski LM, McInerney EM, Kurokawa R, Krones A, Rose DW, Lambert MH, Milburn MV, Glass CK, Rosenfeld MG (1999) Molecular determinants of nuclear receptor-corepressor interaction. Genes Dev 13: 3198–3208

    PubMed  CAS  Google Scholar 

  • Rochette-Egly C, Adam S, Rossignol M, Egly JM, Chambon P (1997) Stimulation of RAR alpha activation function AF-1 through binding to the general transcription factor TFIIH and phosphorylation by CDK7. Cell 90: 97–107

    PubMed  CAS  Google Scholar 

  • Rundlett SE, Carmen AA, Kobayashi R, Bavykin S, Turner BM, Grunstein M (1996) HDAI and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci 93: 14503–14508

    PubMed  CAS  Google Scholar 

  • Sande S, Privalsky M (1996) Identification of TRACs ( T3 Receptor-Associating Cofactors), a family of cofactors that associate with, and modulate the activity of, nuclear hormone receptors. Mol Endocrinol 10: 813–825

    PubMed  CAS  Google Scholar 

  • Schreiber-Agus N, Chin L, Chen K, Torres R, Rao G, Guida P, Skoultchi Al, DePinho RA (1995) An amino terminal domain of Mxil mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 80: 777–786

    PubMed  CAS  Google Scholar 

  • Schulman IG, Li C, Schwabe JW, Evans RM (1997) The phantom ligand effect: allosteric control of transcription by the retinoid X receptor. Genes Dev 11: 299–308

    PubMed  CAS  Google Scholar 

  • Seol W, Mahon MJ, Lee YK, Moore DD (1996) Two receptor interacting domains in the nuclear hormone receptor corepressor RIP I3/N-CoR. Mol Endocrinol pp 1646–1655

    Google Scholar 

  • Shao D, Rangwala SM, Bailey ST, Krakow SL, Reginato MJ, Lazar MA (1998) Interdomain communication regulating ligand binding by PPAR-gamma. Nature 396: 377–380

    PubMed  CAS  Google Scholar 

  • Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95: 927–937

    PubMed  CAS  Google Scholar 

  • Shibata H, Nawaz Z, Tsai SY, O’Malley BW, Tsai MJ (1997a) Gene silencing by chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) is mediated by transcriptional corepressors, nuclear receptor-corepressor (N-CoR) and silencing mediator for retinoic acid receptor and thyroid hormone receptor ( SMRT ). Mol Endocrinol 11: 714–724

    PubMed  CAS  Google Scholar 

  • Shibata H, Spencer TE, Onate SA, Jenster G, Tsai SY, Tsai MJ, O’Malley BW (1997b) Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action. Recent Prog Horm Res 52: 141–165

    PubMed  CAS  Google Scholar 

  • Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai MJ, O’Malley BW (1997) Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389: 194–198

    PubMed  CAS  Google Scholar 

  • Smith CL, Nawaz Z, O’Malley BW (1997) Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol Endocrinol 11: 657–666

    PubMed  CAS  Google Scholar 

  • Stroschein SL, Wang W, Zhou S, Zhou Q, Luo K (1999) Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein. Science 286: 771–774

    PubMed  CAS  Google Scholar 

  • Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator RPD3. Science 272: 408 411

    Google Scholar 

  • Tenbaum S, Baniahmad A (1997) Nuclear receptors: structure, function and involvement in disease. Int J Biochem Cell Biol 29: 1325–1341

    PubMed  CAS  Google Scholar 

  • Torchia J, Glass CK, Rosenfeld MG (1998) Co-activators and co-repressors in the integration of transcriptional responses. Curr Opin Cell Biol 10: 373–383

    PubMed  CAS  Google Scholar 

  • Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK, Rosenfeld MG (1997) The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387: 677–684

    PubMed  CAS  Google Scholar 

  • Tremblay A, Tremblay GB, Labrie F, Giguere V (1999) Ligand-independent recruitment of SRC-1 to estrogen receptor beta through phosphorylation of activation function AF-l. Mol Cell 3: 513–519

    PubMed  CAS  Google Scholar 

  • Tsai CC, Kao HY, Yao TP, McKeown M, Evans RM (1999) SMRTER, a Drosophila nuclear coregulator, reveals that EcR-mediated repression is critical for development. Mol Cell 4: 175–186

    PubMed  CAS  Google Scholar 

  • Tyler JK, Kadonaga JT (1999) The “dark side” of chromatin remodeling: repressive effects on transcription. Cell 99: 443–446

    PubMed  CAS  Google Scholar 

  • Verdel A, Khochbin S (1999) Identification of a new family of higher eukaryotic histone deacetylases. Coordinate expression of differentiation-dependent chromatin modifiers. J Biol Chem 274: 2440–2445

    PubMed  CAS  Google Scholar 

  • Wagner BL, Norris JD, Knotts TA, Weigel NL, McDonnell DP (1998) The nuclear corepressors NCoR and SMRT are key regulators of both ligand-and 8-bromo-cyclic AMP-dependent transcriptional activity of the human progesterone receptor. Mol Cell Biol 18: 1369–1378

    PubMed  CAS  Google Scholar 

  • Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM (1998) ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDACI complex. Proc Natl Acad Sci 95: 10860–10865

    PubMed  CAS  Google Scholar 

  • Wang AH, Bertos NR, Vezmar M, Pelletier N, Crosato M, Heng HH, Th’ng J, Han J, Yang Xi (1999) HDAC4, a human histone deacetylase related to yeast HDAI, is a transcriptional corepressor. Mol Cell Biol 19: 7816–7827

    PubMed  CAS  Google Scholar 

  • Wolffe AP, Wong J, Pruss D (1997) Activators and repressors: making use of chromatin to regulate transcription. Genes Dev 2: 291–302

    CAS  Google Scholar 

  • Wong CW, Privalsky ML (1998) Transcriptional repression by the SMRT-mSin3 corepressor: multiple interactions, multiple mechanisms, and a potential role for TFIIB. Mol Cell Biol 18: 5500–5510

    PubMed  CAS  Google Scholar 

  • Xu L, Lavinsky RM, Dasen JS, Flynn SE, McInerney EM, Mullen TM, Heinzel T, Szeto D, Korzus E, Durokawa R, Aggarwal AK, Rose DW, Glass CK, Rosenfeld MG (1998) Signal specific co-activator domain requirements for Pit-1 activation. Nature 395: 301–306

    PubMed  CAS  Google Scholar 

  • Xu L, Glass CK, Rosenfeld MG (1999) Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev 9: 140–147

    PubMed  CAS  Google Scholar 

  • Xue Y, Wong J, Moreno GT, Young MK, Cote J, Wang W (1998) NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Cell 2: 851–861

    CAS  Google Scholar 

  • Zamir I, Harding HP, Atkins GB, Horlein A, Glass CK, Rosenfeld MG, Lazar MA (1996) A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains. Mol Cell Biol 16: 5458–5465

    PubMed  CAS  Google Scholar 

  • Zhang J, Guenther MG, Carthew RW, Lazar MA (1998) Proteasomal regulation of nuclear receptor corepressor-mediated repression. Genes Dev 12: 1775–1780

    PubMed  CAS  Google Scholar 

  • Zhang Y, Iratni R, Erdjument-Bromage H, Tempst P, Reinberg D (1997) Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89: 357–364

    PubMed  CAS  Google Scholar 

  • Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13: 1924–1935

    PubMed  CAS  Google Scholar 

  • Zhang Y, Sun ZW, Iratni R, Erdjument-Bromage H, Tempst P, Hampsey M, Reinberg D (1998) SAP30, a novel protein conserved between human and yeast, is a component of a histone deacetylase complex. Mol Cell 1: 1021–1031

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ordentlich, P., Downes, M., Evans, R.M. (2001). Corepressors and Nuclear Hormone Receptor Function. In: Privalsky, M.L. (eds) Transcriptional Corepressors: Mediators of Eukaryotic Gene Repression. Current Topics in Microbiology and Immunology, vol 254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10595-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10595-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08709-7

  • Online ISBN: 978-3-662-10595-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics