Skip to main content

Packet Transport and Load Distribution in Scale-Free Networks

  • Conference paper
Traffic and Granular Flow’01
  • 535 Accesses

Abstract

We study a problem of data packet transport in scale-free networks whose degree distribution follows a power-law with the exponent γ. We define load at each vertex as the accumulated total number of data packets passing through that vertex when every pair of vertices sends and receives a data packet along the shortest path connecting the pair. It is found that the load distribution follows a power-law with the exponent δ ≈ 2.2(1), insensitive to different values of γ in the range, 2 < γ ≤ 3, and different mean degrees, which is valid for both undirected and directed cases. Thus, we conjecture that the load exponent is a universal quantity to characterize scale-free networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.H. Strogatz, Nature 410, 268 (2001).

    Google Scholar 

  2. N. Goldenfeld and L.P. Kadanoff, Science 284, 87 (1999).

    Article  Google Scholar 

  3. P. Erdös and A. Rényi, Publ. Math. Inst. Hung. Acad. Sci. Ser. A 5, 17 (1960).

    MATH  Google Scholar 

  4. D.J. Watts and S.H. Strogatz, Nature 393, 440 (1998).

    Article  Google Scholar 

  5. A.-L. Barabâsi and R. Albert, Science 286, 509 (1999).

    Article  MathSciNet  Google Scholar 

  6. P.L. Krapivsky, S. Redner, and F. Leyvraz, Phys. Rev. Lett. 85, 4629 (2000);

    Article  Google Scholar 

  7. P.L. Krapivsky and S. Redner, Phys. Rev. E 63, 066123 (2001).

    Google Scholar 

  8. S.N. Dorogovtsev, J.F.F. Mendes, and A.N. Samukhin, Phys. Rev. Lett. 85, 4633 (2000).

    Article  Google Scholar 

  9. R. Albert, H. Jeong, and A.-L. Barabâsi, Nature 401, 130 (1999).

    Article  Google Scholar 

  10. D. Butler, Nature 405, 112 (2000).

    Article  Google Scholar 

  11. A. Broder et al.,Computer Networks 33, 309 (2000).

    Google Scholar 

  12. E.W. Zegura, K.L. Calvert, and M.J. Donahoo, IEEE/ ACM Trans. Network 5, 770 (1997).

    Article  Google Scholar 

  13. M. Faloutsos, P. Faloutsos, and C. Faloutsos, Comput. Commun. Rev. 29, 251 (1999).

    Article  Google Scholar 

  14. R. Pastor-Satorras, A. Vazquez, and A. Vespignani, (cond-mat/0105161).

    Google Scholar 

  15. S. Redner, Eur. Phys. J. B 4, 131 (1998).

    Google Scholar 

  16. M.E.J. Newman, Proc. Natl Acad. Sci. USA 98, 404 (2001).

    Article  MATH  Google Scholar 

  17. H. Jeong, B. Tombor, R. Albert, Z.N. Oltvani, and A.-L. Barabâsi, Nature 407, 651 (2000).

    Article  Google Scholar 

  18. L.A. Amaral, A. Scala, M. Barthélémy, and H.E. Stanley, Proc. Natl Acad. Sci. USA 97, 11149 (2000).

    Article  Google Scholar 

  19. A.-L. Barabâsi, R. Albert, and H. Jeong, Physica A 272, 173 (1999).

    Article  Google Scholar 

  20. B. Bollobâs, Random Graphs ( Academic Press, New York, 1985 ).

    MATH  Google Scholar 

  21. S.N. Dorogovtsev, J.F.F. Mendes, and A.N. Samukhin, (cond-mat/0011115).

    Google Scholar 

  22. M.E.J. Newman, Phys. Rev. E 64, 016131 (2001); 64, 016132 (2001).

    Google Scholar 

  23. R. Kumar et al.,in Proceedings of the 41th IEEE Syrnp. on Foundations of Computer Science (2000).

    Google Scholar 

  24. H. Simon, Biometrika 42, 425 (1955).

    MathSciNet  MATH  Google Scholar 

  25. S. Bornholdt and H. Ebel, (cond-mat/0008465).

    Google Scholar 

  26. R. Pastor-Satorras and A. Vespignani, Phys. Rev. E 63, 066117 (2001).

    Google Scholar 

  27. K.-I. Goh, B. Kahng, and D. Kim, Phys. Rev. E 64, 051903 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goh, KI., Kahng, B., Kim, D. (2003). Packet Transport and Load Distribution in Scale-Free Networks. In: Fukui, M., Sugiyama, Y., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow’01. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10583-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10583-2_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07304-5

  • Online ISBN: 978-3-662-10583-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics