Skip to main content

On-Ramp Control

  • Conference paper
  • 530 Accesses

Abstract

We study the phase transition on a highway induced by the fluctuations of on-ramp flow. The highway traffic is provided by a hydrodynamical model. We analyze the characteristics of perturbations to induce congestion near an on-ramp. The phase boundary is obtained. A scaling relation is revealed. We also analyze the time evolution of the local density profile. Conventional control mechanisms to regulate the on-ramp flow are examined. A new control scheme is proposed to suppress the congestion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Helbing and M. Treiber, Science 282, 2001 (1998).

    Article  Google Scholar 

  2. B.S. Kerner and H. Rehborn, Phys. Rev. Lett. 79, 4030 (1997).

    Article  Google Scholar 

  3. H.Y. Lee, H.W. Lee, and D. Kim, Phys. Rev. Lett. 81, 1130 (1998).

    Article  Google Scholar 

  4. D. Helbing and M. Treiber, Phys. Rev. Lett. 81, 3042 (1998).

    Article  Google Scholar 

  5. B.S. Kerner, Phys. Rev. Lett. 81, 3797 (1998).

    Article  MATH  Google Scholar 

  6. E. Tomer, L. Safonov, and S. Havlin, Phys. Rev. Lett. 84, 382 (2000).

    Article  Google Scholar 

  7. L. Safonov, E. Tomer, V.V. Strygin, and S. Havlin, Physica A285, 147 (2000).

    Article  MATH  Google Scholar 

  8. N. Mitarai and H. Nakanishi, Phys. Rev. Lett. 85, 1766 (2000).

    Article  Google Scholar 

  9. P. Nelson, Phys. Rev. E61, R6052 (2000).

    Google Scholar 

  10. T. Nagatani, Physica A280, 602 (2000).

    Article  Google Scholar 

  11. B.S. Kerner and P. Konhäuser, Phys. Rev. E48, R2335 (1993).

    Article  Google Scholar 

  12. B.S. Kerner and P. Konhäuser, Phys. Rev. E50, 54 (1994).

    Google Scholar 

  13. B.S. Kerner, S.L. Klenov, and P. Konhäuser, Phys. Rev. E56, 4200 (1997).

    Google Scholar 

  14. The following parameters are adopted[15,16]: r = 0.5 min, co = 54 km/hr, p = 600 veh km/hr, V(p) = Vo (1 — p/po)/[1 + 100 (p/po)4], 0(x) = exp [—x2/(2Q2)] /(2Tr v),where Vo = 120 km/hr and po = 140 veh/km are the maximum values for velocity and density, respectively, and v = 60 m denotes the length of the on-ramp.

    Google Scholar 

  15. H.Y. Lee, H.W. Lee, and D. Kim, Phys. Rev. E59, 5101 (1999).

    Google Scholar 

  16. H.Y. Lee, H.W. Lee, and D. Kim, Phys. Rev. E62, 4737 (2000).

    Google Scholar 

  17. M.C. Chou and D.W. Huang, Phys. Rev. E63, 056106 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, D. (2003). On-Ramp Control. In: Fukui, M., Sugiyama, Y., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow’01. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10583-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10583-2_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07304-5

  • Online ISBN: 978-3-662-10583-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics