Skip to main content

The Generalized Fundamental Diagram of Traffic and Possible Applications

  • Conference paper
Book cover Traffic and Granular Flow’01

Abstract

We propose a new optimization strategy based on inducing stop-and-go waves on the main road and controlling their wavelength. Using numerical simulations of a recent stochastic car-following model [11] we show that this strategy yields optimization of traffic flow in systems with a localized periodic inhomogeneity, such as signalized intersections and entry ramps. The optimization process is explained by our finding of a generalized fundamental diagram (GFD) for traffic, namely a fluxdensity-wavelength relation. Projecting the GFD on the density-flux plane yields a two-dimensional region of stable states, qualitatively similar to that found empirically [7] in synchronized traffic. The empirical finding of the dependence of the wavelength on the average velocity can also be explained using the same approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Chowdhury, L. Santen, and A. Schadschneider: Phys. Rep. 329, 199 (2000).

    Article  MathSciNet  Google Scholar 

  2. D. Helbing: Rev. Mod. Phys. (in the press) (2001); cond-mat/0012229 (2000).

    Google Scholar 

  3. D.E. Wolf: Physica A 263, 438 (1999).

    Article  MathSciNet  Google Scholar 

  4. A.D. May: Traffic Flow Fundamentals, (Prentice Hall, Englewood Cliffs, N.J. 1990 ).

    Google Scholar 

  5. B.D. Greenshields: High. Res. Rec. 14 468 (1934).

    Google Scholar 

  6. M.J. Lighthill and G.B. Whitham: Proc. R. Soc. London Ser. A 229, 317, (1955).

    Article  MathSciNet  MATH  Google Scholar 

  7. B.S. Kerner: Phys. Rev. Lett. 81, 3797 (1998).

    Article  MATH  Google Scholar 

  8. B.S. Kerner: Physics World 12 (8), 25 (1999).

    Google Scholar 

  9. B.S. Kerner and H. Rehborn: Phys. Rev. Lett. 79, 4030 (1997).

    Article  Google Scholar 

  10. L. Neubert, L. Santen, A. Schadschneider, and M. Schreckenberg: Phys. Rev. E 60, 6480 (1999).

    Article  Google Scholar 

  11. E. Tomer, L. Safonov, and S. Havlin: Phys. Rev. Lett. 84, 382 (2000).

    Article  Google Scholar 

  12. L.A. Safonov, E. Tomer, V.V. Strygin, and S. Havlin: Physica A 285, 147 (2000).

    Article  MATH  Google Scholar 

  13. L.A. Safonov, E. Tomer, V.V. Strygin, Y. Ashkenazy, and S. Havlin: Europhys. Lett. 57, 151 (2002).

    Article  Google Scholar 

  14. M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama: Phys. Rev. E 51, 1035 (1995).

    Article  Google Scholar 

  15. Y. Sugiyama: ‘Dynamical Model for Congestion of Freeway Traffic and its Stractural Stability’. In: Traffic and Granular Flow, ed. by D.E. Wolf, M. Schreckenberg, and A. Bachem ( World Scientific, Singapore 1996 ) pp 137–149.

    Google Scholar 

  16. K. Nagel and M. Schreckenberg, J. Phys. I (France) 2, 2221 (1992).

    Article  Google Scholar 

  17. K. Nagel and H.J. Herrmann: Physica A 199, 254 (1993).

    Article  MATH  Google Scholar 

  18. K. Nagel and M. Paczuski: Phys. Rev. E 51, 2909 (1995).

    Article  Google Scholar 

  19. O. Biham, A.A. Middleton and D. Levine: Phys. Rev. A. 46, R6124 - R6127 (1992).

    Article  Google Scholar 

  20. R. Herman and R.W. Rothery: ‘Car Following and Steady State Flow’. In: Proceedings of the 2ns International Symposium on the Theory of Road Traffic Flow, London, 1963, ed. by J. Almond, ( Organization for Economic Cooperation and Development, Paris 1965 ) pp 1–11.

    Google Scholar 

  21. D. Helbing and B. Tilch: Phys. Rev. E 58, 133 (1998).

    Article  Google Scholar 

  22. N. Mitarai and H. Nakanishi: Phys. Rev. Lett. 85, 1766 (2000).

    Article  Google Scholar 

  23. M. Treiber, A. Hennecke, and D. Helbing: Phys. Rev. E 62, 1805 (2000).

    Article  Google Scholar 

  24. S. Cheybani, J. Kertesz, and M. Schreckenberg: Phys. Rev. E. 63, 016108 (2001).

    Google Scholar 

  25. H.Y. Lee, H.W. Lee, and D. Kim: Phys. Rev. Lett. 81, 1130 (1998).

    Article  Google Scholar 

  26. D. Helbing and M. Treiber: Science 282, 2001 (1998).

    Article  Google Scholar 

  27. D. Helbing, A. Hennecke, and M. Treiber: Phys. Rev. Lett. 82, 4360 (1999).

    Article  Google Scholar 

  28. Interactive simulations of the deterministic model with and without traffic lights can be found at http://ory.ph.biu.ac.i1/2000/traffic.

  29. D.C. Gazis and R.B. Potts: ‘The Over-Saturated Intersection’. In: Proceedings of the 2ns International Symposium on the Theory of Road Traffic Flow, London, 1963, ed. by J. Almond, ( Organization for Economic Cooperation and Development, Paris 1965 ) pp 221–237.

    Google Scholar 

  30. W.B. Cronje: Transport. Res. Rec. 905, 80 (1983).

    Google Scholar 

  31. D. Chowdhury and A. Schadschneider: Phys. Rev. E. 59, R1311 (1999).

    Article  Google Scholar 

  32. N. H. Gartner, C. Stamatiadis, and P. J. Tarnoff, Transport. Res. Rec. 1494, 98 (1995).

    Google Scholar 

  33. T.H. Chang and J.T. Lin, Transport. Res. B 34, 471 (2000).

    Article  Google Scholar 

  34. H. Zhang, S.G. Ritchie, and W.W. Recker: Transport. Res. C 4, 51 (1996).

    Article  Google Scholar 

  35. M. Treiber and D. Helbing, preprint (2001).

    Google Scholar 

  36. R. Sollacher and H. Lenz: ‘Nonlinear Control of Stop-and-Go Traffic’. In: Tra f fic and Granular Flow ‘89, ed. by D. Helbing, H.J. Herrmann, M. Schreckenberg, and D.E. Wolf, ( Springer, Berlin 2000 ) pp 315–320.

    Chapter  Google Scholar 

  37. Decreasing a and T would not yield the same result due to relatively large values of T_/r. in Eq. (12).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tomer, E., Safonov, L.A., Havlin, S. (2003). The Generalized Fundamental Diagram of Traffic and Possible Applications. In: Fukui, M., Sugiyama, Y., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow’01. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10583-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10583-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07304-5

  • Online ISBN: 978-3-662-10583-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics