Skip to main content

The Spectrum of Turbulence

  • Chapter
Time, Quantum and Information

Abstract

The clustered distribution of interstellar matter raised C.F. von Weizsäcker’s interest in turbulent flow with its nested vortex structures, its intermittent distribution of strongly active, dissipative turbulent bursts amidst more quiet regions, all this strongly fluctuating in time. Evidently many time scales are present, the smaller vortex structures circulating faster, being advected by the slower, larger ones. Also the spatial structures of the turbulent vortices or eddies display many scales. The prevailing impression of a turbulent flow field is its structural similarity on the various scales: zoomed smaller parts of the flow field look like larger ones, in a statistical sense. Such systems are properly described by power or scaling laws of the physical quantities of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.N. Kolmogorov: Compt. Rend. Acad. Sc. (C. R. Acad. Nauk) USSR 30, 301 (1941)

    Google Scholar 

  2. A.M. Oboukhoff: Compt. Rend. Acad. Sc. (C. R. Acad. Nauk) USSR 32, 19 (1941)

    Google Scholar 

  3. C.F. von Weizsäcker: Z. Phys. 124, 614 (1948)

    Article  ADS  MATH  Google Scholar 

  4. W. Heisenberg: Z. Phys. 124, 628 (1948); Proc. R. Soc. (Lond) 195, 402 (1948)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. L. Onsager: Phys. Rev. 68, 286 (1945)

    Google Scholar 

  6. L.F. Richardson: Proc. R. Soc. (London) A110, 709 (1926)

    Article  ADS  Google Scholar 

  7. L.F. Richardson: Beitr. Phys. Atm. 15, 24 (1929)

    Google Scholar 

  8. M.C. Jullien, J. Paret and P. Tabeling: Phys. Rev. Lett. 82, 2872 (1999)

    Article  ADS  Google Scholar 

  9. S. Ott and J. Mann: J. Fluid Mech. 422, 207 (2000)

    Article  ADS  MATH  Google Scholar 

  10. G. Boffetta and I.M. Sokolov: Phys. Rev. Lett. 88, 094 501 (2002)

    Google Scholar 

  11. T. Ishihara and Y. Kaneda: preprint (2002)

    Google Scholar 

  12. S. Grossmann: Ann. d. Phys. (Leipzig) 47, 577 (1990)

    Article  ADS  MATH  Google Scholar 

  13. S. Grossmann and I. Procaccia: Phys. Rev. A29, 1358 (1984)

    Article  ADS  Google Scholar 

  14. S. Grossmann and C. Wiele: Z. Phys. B 103, 469 (1997)

    Article  Google Scholar 

  15. S. Grossmann: preprint, Marburg 2002

    Google Scholar 

  16. L.D. Landau and E.M. Lifschitz: Hydrodynamik, 5th edition. Akademie Verlag, Berlin 1991

    Google Scholar 

  17. U. Frisch: Turbulence — The Legacy of A.N. Kolmogorov. Cambridge University Press, 1995

    Google Scholar 

  18. U. Frisch, P.-L. Sulem and M. Nelkin: J. Fluid Mech. 87, 719 (1978)

    Article  ADS  MATH  Google Scholar 

  19. G. Parisi and U. Frisch. In: M. Ghil, R. Benzi and G. Parisi (eds.): Turbulence and Predictability in Geophysical Fluid Dynamics. Proc. Intern. School of Physics “Enrico Fermi” 1983, Varenna, Italy. North Holland, Amsterdam 1985, pp. 84–87

    Google Scholar 

  20. This corresponds to 3 x 1022 cm; in [3] there is a misprint here

    Google Scholar 

  21. H. Effinger and S. Grossmann: Z. Phys. B66, 289 (1987)

    Article  Google Scholar 

  22. H. Effinger and S. Grossmann: Selfsimilarity of Developed Turbulence. In: W. Göttinger (ed.): The Physics of Structure Formation: Theory and Experiment. Proc. Conference 27.10.-1.11. 1986, Tübingen, Germany. Springer, Berlin 1987, pp. 346–351

    Chapter  Google Scholar 

  23. S. Grossmann: Diffusion in Fully Developed Turbulence: A Random Walk on a Fractal Structure. In: L. Garrido (ed.): Fluctuations and Stochastic Phenomena in Condensed Matter. Proc. Sitges Conference 25–31 May, 1986. Lecture Notes in Physics 268. Springer, 1987, pp. 287–314

    Google Scholar 

  24. S. Grossmann and S. Thomae: Z. Phys. B49, 253 (1982)

    Article  Google Scholar 

  25. D. Daems, S. Grossmann, V.S. L’vov and I. Procaccia: Phys. Rev. E60, 6656 (1999) and chao-dyn/9811024

    Google Scholar 

  26. H. Effinger and S. Grossmann: Phys. Fluids AI, 1021 (1989)

    Google Scholar 

  27. G.K. Batchelor and A.A. Townsend: Proc. R. Soc. (London) A199, 238 (1949)

    Article  ADS  MATH  Google Scholar 

  28. A.M. Oboukhoff: J. Fluid Mech. 13, 77 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  29. A.N. Kolmogorov: J. Fluid Mech. 13, 82 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  30. G. Falkovich, K. Gawgdzki and M. Vergassola: Rev. Mod. Phys. 73, 919 (2001)

    Article  ADS  Google Scholar 

  31. A. Noullez, G. Wallace, W. Lempert, R.B. Miles and U. Frisch: J. Fluid Mech. 339, 287 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  32. S. Grossmann, D. Lohse and A. Reeh: Phys. Fluids 9, 3817 (1997)

    Article  ADS  Google Scholar 

  33. B. Dhruva, Y. Tsuji and K.R. Sreenivasan: Phys. Rev E56, R4928 (1997)

    ADS  Google Scholar 

  34. I. Arad, B. Dhruva, S. Kurien, V.S. L’vov, I. Procaccia and K.R. Sreenivasan: Phys. Rev. Lett. 81, 5330 (1998)

    Article  ADS  Google Scholar 

  35. I. Arad, L. Biferale, I. Mazzitelli and I. Procaccia: Phys. Rev. Lett. 82, 5040 (1999)

    Article  ADS  Google Scholar 

  36. I. Arad, V.S. L’vov and I. Procaccia: Phys. Rev. E59, 6753 (1999)

    MathSciNet  ADS  Google Scholar 

  37. S. Grossmann, A. von der Heydt and D. Lohse: J. Fluid Mech 440, 381 (2001)

    Article  ADS  MATH  Google Scholar 

  38. S. Grossmann and D. Lohse: J. Fluid Mech. 407, 27 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. S. Grossmann and D. Lohse: Phys. Rev. E66, 016305 (2002)

    Google Scholar 

  40. W. Heisenberg: Ann. d. Phys. (Leipzig) 74, 577 (1924)

    Article  ADS  Google Scholar 

  41. L. Boberg and U. Brosa: Z. Natuiforsch. A43, 697 (1988)

    Google Scholar 

  42. L.N. Trefethen, A.E. Trefethen, S.C. Reddy and T.A. Driscol: Science 261, 578 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. S. Grossmann: Rev. Mod. Phys. 72, 603 (2000)

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grossmann, S. (2003). The Spectrum of Turbulence. In: Castell, L., Ischebeck, O. (eds) Time, Quantum and Information. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10557-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10557-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07892-7

  • Online ISBN: 978-3-662-10557-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics