Skip to main content

The Molecular Nature of Spemann’s Organizer

  • Chapter
The Vertebrate Organizer

Abstract

Embryology is a discipline that has been traditionally strongly influenced by its history. Its most important experiment was carried out by Hans Spemann and Hilde Mangold in Freiburg, Germany, in 1924. An English translation of their epoch-making paper, by Viktor Hamburger, is available in the Festschrift celebrating the 75th anniversary of this work (Spemann and Mangold 1924; de Robertis and Aréchaga 2001). By transplanting the dorsal lip into the ventral side of a salamander gastrula of a different species, they found that the graft could induce a secondary neural plate and a twinned body axis. The dorsal lip was able to induce central nervous system (CNS), dorsal mesoderm (in particular somites and pronephros) and a secondary gut cavity. Since the fate of grafted cells could be followed by their different pigmentation, they were able to demonstate that the dorsal blastopore lip had very powerful inductive properties on neighboring cells. This experiment led to the realization that vertebrate cell differentiation progresses through a series of successive cell-cell inductions. For this well-known work Spemann received the Nobel Prize of Medicine in 1935 (Spemann 1938; Sander and Faessler 2001). When cloning became practical, it became possible to identify the molecules responsible for this remarkable inducing activity. In this chapter we review the molecular exploration of the gene products that execute the phenomenon of the Spemann organizer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agius E, Oelgeschläger M, Wessely O, Kemp C, de Robertis EM (2000) Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127: 1173–1183

    PubMed  CAS  Google Scholar 

  • Ashe HL, Levine M (1999) Local inhibition and long-range enhancement of Dpp signal transduction by Sog. Nature 398: 427–431

    Article  PubMed  CAS  Google Scholar 

  • Aubert J, Dunstan H, Chambers I, Smith A (2002) Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation. Nat Biotechnol 20: 1240–1245

    Article  PubMed  CAS  Google Scholar 

  • Bachiller D, Klingensmith J, Kemp C, Belo JA, Anderson RM, May SR, McMahon JA, McMahon AP, Harland RM, Rossant J, De Robertis EM (2000) The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403: 658–661

    Article  PubMed  CAS  Google Scholar 

  • Bachiller D, Klingensmith J, Shneyder N, Anderson R, Tran U, Rossant J, de Robertis EM (2003) The role of chordin/BMP signals in mammalian pharyngeal development and DiGeorge syndrome Development (in press)

    Google Scholar 

  • Baker JC, Beddington RS, Harland RM (1999) Wnt signaling in Xenopus embryos inhibits BMP4 expression and activates neural development. Genes Dev 13: 3149–3159

    Article  PubMed  CAS  Google Scholar 

  • Balemans W, van Hul W (2002) Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators. Dev Biol 250: 231–250

    Article  PubMed  CAS  Google Scholar 

  • Belo JA, Bachiller D, Agius E, Kemp C, Borges AC, Marques S, Piccolo S, de Robertis EM (2000) Cerberus-like is a secreted BMP and nodal antagonist not essential for mouse development. Genesis 26: 265–270

    Article  PubMed  CAS  Google Scholar 

  • Bertocchini F, Stern CD (2002) The hypoblast of the chick embryo positions the primitive streak by antagonizing nodal signaling. Dev Cell 3: 735–744

    Article  PubMed  CAS  Google Scholar 

  • Blumberg B, Wright CV, de Robertis EM, Cho KW (1991) Organizer-specific homeobox genes in Xenopus laevis embryos. Science 253: 194–196

    Article  PubMed  CAS  Google Scholar 

  • Bouwmeester T, Kim S, Sasai Y, Lu B, de Robertis EM (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382: 595–601

    Article  PubMed  CAS  Google Scholar 

  • Bridges C (1920) The mutant crossveinless in Drosophila melanogaster. Proc Natl Acad Sci USA 6: 660–663

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Holtzman DA, Chau S, Chickering T, Woolf EA, Holmgren LM, Bodorova J, Gearing DP, Holmes WE, Brivanlou AH (2001) Twisted gastrulation can function as a BMP antagonist. Nature 410: 483–487

    Article  PubMed  CAS  Google Scholar 

  • Cheng AM, Thisse B, Thisse C, Wright CV (2000) The lefty-related factor Xatv acts as a feedback inhibitor of nodal signaling in mesoderm induction and L-R axis development in Xenopus. Development 127: 1049–1061

    PubMed  CAS  Google Scholar 

  • Cho KW, Blumberg B, Steinbeisser H, De Robertis EM (1991) Molecular nature of Spemann’s organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67: 1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Chuang PT, McMahon AP (1999) Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 397: 617–621

    Article  PubMed  CAS  Google Scholar 

  • Coffinier C, Ketpura N, Tran U, Geissert D, de Robertis EM (2003) Mouse Crossveinless-2 is the vertebrate homolog of a Drosophila extracellular regulator of BMP signaling. Gene Expr Patterns 2: 189–194

    Article  Google Scholar 

  • Conley CA, Silburn R, Singer MA, Ralston A, Rohwer-Nutter D, Olson DJ, Gelbart W, Blair SS (2000) Crossveinless 2 contains cysteine-rich domains and is required for high levels of BMPlike activity during the formation of the cross veins in Drosophila. Development 127: 3947–3959

    PubMed  CAS  Google Scholar 

  • Dale L, Evans W, Goodman SA (2002) Xolloid-related: a novel BMP1/Tolloid-related metalloprotease is expressed during early Xenopus development. Mech Dev 119: 177–190

    Article  PubMed  CAS  Google Scholar 

  • De Robertis EM, Aréchaga J (eds) (2001) The Spemann oganizer 75 years on. Int J Dev Biol vol 45. University of the Basque Country Press, Bilbao, Spain

    Google Scholar 

  • De Robertis EM, Larrain J, Oelgeschläger M, Wessely O (2000) The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nat Rev Genet 1: 171–181

    Article  PubMed  Google Scholar 

  • De Robertis EM, Wessely O, Oelgeschläger M, Brizuela B, Pera E, Larrain J, Abreu J, Bachiller D (2001) Molecular mechanisms of cell-cell signaling by the Spemann-Mangold organizer. Int J Dev Biol 45: 189–197

    PubMed  Google Scholar 

  • Dirksen ML, Jamrich M (1992) A novel, activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a fork head DNA-binding domain. Genes Dev 6: 599–608

    Article  PubMed  CAS  Google Scholar 

  • Eldar A, Dorfman R, Weiss D, Ashe H, Shilo BZ, Barkai N (2002) Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419: 304–308

    Article  PubMed  CAS  Google Scholar 

  • Garcia Abreu J, Coffinier C, Larrain J, Oelgeschläger M, de Robertis EM (2002) Chordin-like CR domains and the regulation of evolutionarily conserved extracellular signaling systems. Gene 287: 39–47

    Article  PubMed  CAS  Google Scholar 

  • Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391: 357–362

    Article  PubMed  CAS  Google Scholar 

  • Green JB, New HV, Smith JC (1992) Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell 71: 731–739

    Article  PubMed  CAS  Google Scholar 

  • Grunz H (1983) Change in the differentiation pattern of Xenopus laevis ectoderm by variation of the incubation in time and concentration of vegetalizing factor. Roux’s Arch Dev Bio 192: 130–137

    Article  Google Scholar 

  • Hansen CS, Marion CD, Steele K, George S, Smith WC (1997) Direct neural induction and selective inhibition of mesoderm and epidermis inducers by Xnr3. Development 124: 483–492

    PubMed  CAS  Google Scholar 

  • Harland R, Gerhart J (1997) Formation and function of Spemann’s organizer. Annu Rev Cell Dev Biol 13: 611–67

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Kelly OG, Melton DA (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77: 283–295

    Article  PubMed  CAS  Google Scholar 

  • Houart C, Caneparo L, Heisenberg C, Barth K, Take-Uchi M, Wilson S (2002) Establishment of the telencephalon during gastrulation by local antagonism of Wnt signaling. Neuron 35: 255265

    Google Scholar 

  • Hsieh JC, Kodjabachian L, Rebbert ML, Rattner A, Smallwood PM, Samos CH, Nusse R, Dawid IB, Nathans J (1999) A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398: 431–436

    Article  PubMed  CAS  Google Scholar 

  • Hsu DR, Economides AN, Wang X, Eimon PM, Harland RM (1998) The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol Cell 1: 673–683

    Article  PubMed  CAS  Google Scholar 

  • lemura S, Yamamoto TS, Takagi C, Uchiyama H, Natsume T, Shimasaki S, Sugino H, Ueno N (1998) Direct binding of follistatin to a complex of bone-morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryo. Proc Natl Acad Sci USA 95: 9337–9342

    Article  Google Scholar 

  • Jones SE, Jomary C (2002) Secreted frizzled-related proteins: searching for relationships and patterns. BioEssays 24: 811–820

    CAS  Google Scholar 

  • Larrain J, Bachiller D, Lu B, Agius E, Piccolo S, de Robertis EM (2000) BMP-binding modules in chordin: a model for signalling regulation in the extracellular space. Development 127: 821–830

    PubMed  CAS  Google Scholar 

  • Larrain J, Oelgeschläger M, Ketpura NI, Reversade B, Zakin L, de Robertis EM (2001) Proteolytic cleavage of Chordin as a switch for the dual activities of Twisted gastrulation in BMP signaling. Development 128:4439–4447

    Google Scholar 

  • Leyns L, Bouwmeester T, Kim SH, Piccolo S, De Robertis EM (1997) Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88: 747–756

    Article  PubMed  CAS  Google Scholar 

  • Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, Niehrs C (2001) LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411: 321–325

    Article  PubMed  CAS  Google Scholar 

  • Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM, Delius H, Hoppe D, Stannek P, Walter C, Glinka A, Niehrs C (2002) Kremen proteins are Dickkopf receptors that regulate Wnt/betacatenin signalling. Nature 417: 664–667

    Article  PubMed  CAS  Google Scholar 

  • Mason ED, Konrad KD, Webb CD, Marsh JL (1994) Dorsal midline fate in Drosophila embryos requires twisted gastrulation, a gene encoding a secreted protein related to human connective tissue growth factor. Genes Dev 8: 1489–1501

    Article  PubMed  CAS  Google Scholar 

  • Mayr T, Deutsch U, Kuhl M, Drexler HC, Lottspeich F, Deutzmann R, Wedlich D, Risau W (1997) Fritz: a secreted frizzled-related protein that inhibits Wnt activity. Mech Dev 63: 109–125

    Article  PubMed  CAS  Google Scholar 

  • McMahon JA, Takada S, Zimmerman LB, Fan CM, Harland RM, McMahon AP (1998) Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev 12: 1438–1452

    Article  PubMed  CAS  Google Scholar 

  • Meno C, Gritsman K, Ohishi S, Ohfuji Y, Heckscher E, Mochida K, Shimono A, Kondoh H, Talbot WS, Robertson EJ, Schier AF, Hamada H (1999) Mouse Lefty2 and zebrafish antivin are feedback inhibitors of nodal signaling during vertebrate gastrulation. Mol Cell 4: 287–298

    Article  PubMed  CAS  Google Scholar 

  • Niehrs C (2001) The Spemann organizer and embryonic head induction. EMBO J 20: 631–637

    Article  PubMed  CAS  Google Scholar 

  • Niehrs C, Keller R, Cho KW, de Robertis EM (1993) The homeobox gene goosecoid controls cell migration in Xenopus embryos. Cell 72: 491–503

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop PD (1997) Short historical survey of pattern formation in the endo-mesoderm and the neural anlage in the vertebrates: the role of vertical and planar inductive actions. Cell Mol Life Sci 53: 305–318

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop PD, Koster K (1995) Vertical versus planar induction in amphibian early development. Dev Growth Differ 37: 653–668

    Article  Google Scholar 

  • Oelgeschläger M, Larrain J, Geissert D, de Robertis EM (2000) The evolutionarily conserved BMP-binding protein Twisted gastrulation promotes BMP signalling. Nature 405: 757–763

    Article  PubMed  Google Scholar 

  • Oelgeschläger M, Kuroda H, Reversade B, de Robertis EM (2003) Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryos. Dev Cell 4: 219–230

    Article  PubMed  Google Scholar 

  • Patthy L (2000) The WIF module. Trends Biochem Sci 25: 12–13

    Article  CAS  Google Scholar 

  • Pearce JJ, Penny G, Rossant J (1999) A mouse cerberus/Dan-related gene family. Dev Biol 209: 98110

    Article  Google Scholar 

  • Pera EM, de Robertis EM (2000) A direct screen for secreted proteins in Xenopus embryos identifies distinct activities for the wnt antagonists crescent and frzb-1. Mech Dev 96: 183–195

    Article  PubMed  CAS  Google Scholar 

  • Perea-Gomez A, Vella FD, Shawlot W, Oulad-Abdelghani M, Chazaud C, Meno C, Pfister V, Chen L, Robertson E, Hamada H, Behringer RR, Ang SL (2002) Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev Cell 3: 745–756

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer PL, de Robertis EM, Izpisua-Belmonte JC (1997) Crescent, a novel chick gene encoding a Frizzled-like cysteine-rich domain, is expressed in anterior regions during early embryogenesis. Int J Dev Biol 41: 449–458

    PubMed  CAS  Google Scholar 

  • Piccolo S, Sasai Y, Lu B, de Robertis EM (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86: 589–598

    Article  PubMed  CAS  Google Scholar 

  • Piccolo S, Agius E, Lu B, Goodman S, Dale L, De Robertis EM (1997) Cleavage of Chordin by Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell 91: 407–416

    Article  PubMed  CAS  Google Scholar 

  • Piccolo S, Agius E, Leyns L, Bhattacharyya S, Grunz H, Bouwmeester T, de Robertis EM (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397: 707–10

    Article  PubMed  CAS  Google Scholar 

  • Ross JJ, Shimmi O, Vilmos P, Petryk A, Kim H, Gaudenz K, Hermanson S, Ekker SC, O’Connor MB, Marsh JL (2001) Twisted gastrulation is a conserved extracellular BMP antagonist. Nature 410: 479–483

    Article  PubMed  CAS  Google Scholar 

  • Ruiz i Altaba A (1993) Induction and axial patterning of the neural plate: planar and vertical signals. J Neurobiol 24: 1276–1304

    Article  Google Scholar 

  • Salic AN, Kroll KL, Evans LM, Kirschner MW (1997) Sizzled: a secreted Xwnt8 antagonist ex- pressed in the ventral marginal zone of Xenopus embryos. Development 124: 4739–4748

    PubMed  CAS  Google Scholar 

  • Sander K, Faessler PE (2001) Introducing the Spemann-Mangold organizer: experiments and insights that generated a key concept in developmental biology. Int J Dev Biol 45: 1–11

    PubMed  CAS  Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79: 779–790

    Google Scholar 

  • Schneider S, Steinbeisser H, Warga RM, Hausen P (1996) Beta-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech Dev 57: 191–198

    Article  PubMed  CAS  Google Scholar 

  • Schneider VA, Mercola M (2001) Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev 15: 304–315

    Article  PubMed  CAS  Google Scholar 

  • Schulte-Merker S, Lee KJ, McMahon AP, Hammerschmidt M (1997) The zebrafish organizer requires chordino. Nature 387: 862–863

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer R, Howes R, Smith R, Shilo BZ, Freeman M (1995) Inhibition of Drosophila EGF receptor activation by the secreted protein Argos. Nature 376: 699–702

    Article  PubMed  CAS  Google Scholar 

  • Scott IC, Blitz IL, Pappano WN, Maas SA, Cho KW, Greenspan DS (2001) Homologues of Twisted gastrulation are extracellular cofactors in antagonism of BMP signalling. Nature 410: 475–478

    Article  PubMed  CAS  Google Scholar 

  • Smith WC, Harland RM (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70: 829–840

    Article  PubMed  CAS  Google Scholar 

  • Smith WC, McKendry R, Ribisi S Jr, Harland RM (1995) A nodal-related gene defines a physical and functional domain within the Spemann organizer. Cell 82: 37–46

    Article  PubMed  CAS  Google Scholar 

  • Spemann H (1938) Embryonic development and induction. Yale University Press, New Haven, Conn, reprinted by Hafner Publishing Company, 1962

    Google Scholar 

  • Spemann H, Mangold H (1924) Induction of embryonic primordia by implantation of organizers from a different species, reprinted in 2001. Int J Dev Biol 45: 13–38

    Google Scholar 

  • Taira M, Jamrich M, Good PJ, Dawid IB (1992) The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos. Genes Dev 6: 356–366

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Yokota C, Takano K, Tanegashima K, Onuma Y, Goto JI, Asashima M (2000) Two novel nodal-related genes initiate early inductive events in Xenopus Nieuwkoop center. Development 127: 5319–5329

    PubMed  CAS  Google Scholar 

  • Thisse B, Wright CV, Thisse C (2000) Activin-and Nodal-related factors control antero-posterior patterning of the zebrafish embryo. Nature 403: 425–428

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Krinks M, Lin K, Luyten FP, Moos M Jr (1997) Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 88: 757–766

    Article  PubMed  CAS  Google Scholar 

  • Wessely O, Agius E, Oelgeschläger M, Pera EM, de Robertis EM (2001) Neural induction in the absence of mesoderm: beta-catenin-dependent expression of secreted BMP antagonists at the blastula stage in Xenopus. Dev Biol 234: 161–173

    Article  PubMed  CAS  Google Scholar 

  • Wilson S, Rydstrom A, Trimborn T, Willert K, Nusse R, Jessell TM, Edlund T (2001) The status of Wnt signalling regulates neural and epidermal fates in the chick embryo. Nature 411: 325–330

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman LB, De Jesus-Escobar JM, Harland RM (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86: 599–606

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De Robertis, E.M., Wessely, O. (2004). The Molecular Nature of Spemann’s Organizer. In: Grunz, H. (eds) The Vertebrate Organizer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10416-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10416-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05732-8

  • Online ISBN: 978-3-662-10416-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics