Skip to main content

Hensen’s Node: The Embryonic Organizer of the Chick

  • Chapter
The Vertebrate Organizer

Abstract

The chick embryo is a well-established model system for studying vertebrate embryogenesis. Its relatively large size during gastrulation and neurulation provides numerous and unique experimental possibilities. Today, techniques are available for culturing, manipulating, and mapping of avian embryos, tissues or single cells (Schoenwolf 2001). A wealth of information has been accumulated on pattern formation, cell lineages, cell specifications, organogenesis, tissue interactions, and inductive or responsive potentials. Avian versions of most developmental control genes are by now cloned and characterized. Their transcriptional responses to ectopically applied soluble factors or antagonists are often known. However, only a few of them have been functionally investigated after reintroduction into the living embryo via infection with viruses or the electroporation of cloned expression vectors. To date, lossof-function experiments have only rarely and with limited success been performed, using anti-sense or dominant negative strategies. Thus, with respect to genetic or pseudo-genetic approaches, the avian embryo as an experimental system still suffers from drawbacks. However, the availability of novel molecular tools such as morpholino oligonucleotides or small interfering RNAs indicates the ongoing search for novel experimental strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bachvarova RF, Skromne I, Stern CD (1998) Induction of primitive streak and Hensen’s node by the posterior marginal zone in the early chick embryo. Development 125: 3521–3534

    PubMed  CAS  Google Scholar 

  • Bisgrove BW, Essner JJ, Yost HJ (1999) Regulation of midline development by antagonism of lefty and nodal signaling. Development 126: 3253–3262

    PubMed  CAS  Google Scholar 

  • Boettger T, Wittier L, Kessel M (1999) FGF8 functions in the specification of the right body side of the chick. Curr Biol 9: 277–280

    Article  PubMed  CAS  Google Scholar 

  • Chapman SC, Schubert FR, Schoenwolf GC, Lumsden A (2002) Analysis of spatial and temporal gene expression patterns in blastula and gastrula stage chick embryos. Dev Biol 245: 187–199

    Article  PubMed  CAS  Google Scholar 

  • Dias MS, Schoenwolf GC (1990) Formation of ectopic neurepithelium in chick blastoderms: age-related capacities for induction and self-differentiation following transplantation of quail Hensen’s nodes. Anat Rec 228: 437–448

    Article  PubMed  CAS  Google Scholar 

  • Eyal-Giladi H, Kochav S (1976) From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick. I. General morphology. Dev Biol 49: 321–337

    Google Scholar 

  • Fischer A, Viehbahn C, Blum M (2002) FGF8 acts as a right determinant during establishment of the left-right axis in the rabbit. Curr Biol 12: 1807–1816

    Article  PubMed  CAS  Google Scholar 

  • Foley AC, Stern CD (2001) Evolution of vertebrate forebrain development: how many different mechanisms? J Anat 199: 35–52

    Article  PubMed  CAS  Google Scholar 

  • Foley AC, Storey KG, Stern CD (1997) The prechordal region lacks neural inducing ability, but can confer anterior character to more posterior neuroepithelium. Development 124: 2983–2996

    PubMed  CAS  Google Scholar 

  • Foley AC, Skromne I, Stern CD (2000) Reconciling different models of forebrain induction and patterning: a dual role for the hypoblast. Development 127: 3839–3854

    PubMed  CAS  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morph 88: 49–92

    Article  Google Scholar 

  • Hume CR, Dodd J (1993) Cwnt-8C: a novel Wnt gene with a potential role in primitive streak formation and hindbrain organization. Development 119: 1147–1160

    PubMed  CAS  Google Scholar 

  • Izpisna-Belmonte JC, de Robertis EM, Storey KG, Stern CD (1993) The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm. Cell 74: 645–659

    Article  Google Scholar 

  • Joubin K, Stern CD (1999) Molecular interactions continuously define the organizer during the cell movements of gastrulation. Cell 98: 559–571

    Article  PubMed  CAS  Google Scholar 

  • Knezevic V, de Santo R, Mackem S (1997) Two novel chick T-box genes related to mouse Brachyury are expressed in different, non-overlapping mesodermal domains during gastrulation. Development 124: 411–419

    PubMed  CAS  Google Scholar 

  • Knoetgen H, Teichmann U, Kessel M (1999a) Head-organizing activities of endodermal tissues in vertebrates. Cell Mol Biol 45: 481–492

    PubMed  CAS  Google Scholar 

  • Knoetgen H, Viebahn C, Kessel M (1999b) Head induction in the chick by primitive endoderm of mammalian, but not avian origin. Development 126: 815–125

    PubMed  CAS  Google Scholar 

  • Knoetgen H, Teichmann U, Wittier L, Viebahn C, Kessel M (2000) Anterior neural induction by nodes from rabbits and mice. Dev Biol 225: 370–380

    Article  PubMed  CAS  Google Scholar 

  • Kochav S, Eyal-Giladi H (1971) Bilateral symmetry in chick embryo determination by gravity. Science 171: 1027–1029

    Article  PubMed  CAS  Google Scholar 

  • Lawson A, Colas JF, Schoenwolf GC (2001) Classification scheme for genes expressed during formation and progression of the avian primitive streak. Anat Rec 262: 221–226

    Article  PubMed  CAS  Google Scholar 

  • Lemaire L, Roeser T, Izpisua-Belmonte J-C, Kessel M (1997) Segregating expression domains of two goosecoid genes during the transition from gastrulation to neurulation in chick embryos. Development 124: 1443–1452

    PubMed  CAS  Google Scholar 

  • Levin M, Johnson RL, Stern CD, Kuehn M, Tabin C (1995) A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82: 803–814

    Article  PubMed  CAS  Google Scholar 

  • Levin M, Thorlin T, Robinson KR, Nogi T, Mercola M (2002) Asymmetries in H/K-ATPase and cell membrane potentials comprise a very early step in left-rght patterning. Cell 111: 77–89

    Article  PubMed  CAS  Google Scholar 

  • Logan M, Paganwestphal SM, Smith DM, Paganessi L, Tabin CJ (1998) The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell 94: 307–317

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Sanchez C, Garcia-Martinez V, Schoenwolf GC (2001) Localization of cells of the prospective neural plate, heart and somites within the primitive streak and epiblast of avian embryos at intermediate primitive-streak stages. Cells Tissues Org 169: 334–346

    Article  CAS  Google Scholar 

  • Meyers EN, Martin GR (1999) Differences in left-right axis pathways in mouse and chick: functions of FGF8 and SHH. Science 285: 403–406

    Article  PubMed  CAS  Google Scholar 

  • Monsoro-Burq AH, Le Douarin NM (2001) BMP4 plays a key role in left-right patterning in chick embryos by maintaining sonic hedgehog asymmetry. Mol Cell 7: 789–799

    Article  PubMed  CAS  Google Scholar 

  • Muhr J, Graziano E, Wilson S, Jessell TM, Edlund T (1999) Convergent inductive signals specify midbrain, hindbrain, and spinal cord identity in gastrula stage chick embryos. Neuron 23: 689–702

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop PD (1969) The formation of the mesoderm in urodelean amphibians. II. The origin of the dorsal-ventral polarity of the mesoderm. Roux’ Arch Entw Mech Org 163: 298–315

    Article  Google Scholar 

  • Nordstrom U, Jessell TM, Edlund T (2002) Progressive induction of caudal neural character by graded Wnt signaling. Nat Neurosci 5: 525–532

    Article  PubMed  Google Scholar 

  • Peale FV Jr, Sugden L, Bothwell M (1998) Characterization of CMIX, a chicken homeobox gene related to the Xenopus gene mix.1. Mech Dev 75: 167–170

    Article  PubMed  CAS  Google Scholar 

  • Pera E, Stein S, Kessel M (1999) Ectodermal patterning in the avian embryo: epidermis versus neural plate. Development 126: 63–73

    PubMed  CAS  Google Scholar 

  • Pera EM, Kessel M (1997) Patterning of the chick forebrain anlage by the prechordal plate. Development 124: 4153–4162

    PubMed  CAS  Google Scholar 

  • Piedra ME, Icardo JM, Albajar M, Rodriguezrey JC, Ros MA (1998) Pitx2 participates in the late phase of the pathway controlling left-right asymmetry. Cell 94: 319–324

    Article  PubMed  CAS  Google Scholar 

  • Psychoyos D, Stern CD (1996) Fates and migratory routes of primitive streak cells in the chick embryo. Development 122: 1523–1534

    PubMed  CAS  Google Scholar 

  • Rodriguez-Esteban C, Capdevila J, Kawakami Y, Belmonte JCI (2001) Wnt signaling and PKA control Nodal expression and left-right determination in the chick embryo. Development 128: 3189–3195

    PubMed  CAS  Google Scholar 

  • Roeser T, Stein S, Kessel M (1999) Nuclear localization of b-catenin in normal and LiC1 exposed chick embryos. Development 126: 2955–2965

    PubMed  CAS  Google Scholar 

  • Ryan AK, Blumberg B, Rodriguezesteban C, Yoneitamura S, Tamura K, Tsukui T, Delapena J, Sabbagh W, Greenwald J, Choe S, Norris DP, Robertson EJ, Evans RM, Rosenfeld MG, Bel-monte JCI (1998) Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 394: 545–551

    Article  PubMed  CAS  Google Scholar 

  • Schneider A, Mijalski T, Schlange T, Dai WL, Overbeek P, Arnold HH, Brand T (1999) The homeobox gene NKX3.2 is a target of left-right signalling and is expressed on opposite sides in chick and mouse embryos. Curr Biol 9: 911–914

    Article  PubMed  CAS  Google Scholar 

  • Schoenwolf GC (2001) Cutting, pasting and painting: experimental embryology and neural development. Nat Rev Neurosci 2: 763–771

    Article  PubMed  CAS  Google Scholar 

  • Seleiro EA, Connolly DJ, Cooke J (1996) Early developmental expression and experimental axis determination by the chicken Vgl gene. Curr Biol 6: 1476–1486

    Article  PubMed  CAS  Google Scholar 

  • Shah SB, Skromne I, Hume CR, Kessler DS, Lee KJ, Stern CD, Dodd J (1997) Misexpression of chick Vgl in the marginal zone induces primitive streak formation. Development 124: 5127–5138

    PubMed  CAS  Google Scholar 

  • Skromne I, Stern CD (2001) Interactions between Wnt and Vgl signalling pathways initiate primitive streak formation in the chick embryo. Development 128: 2915–2927

    PubMed  CAS  Google Scholar 

  • Spemann H, Mangold H (1924) Über die Induktion von Embryoanlagen durch Implantation artfremder Organisatoren. Roux Arch Entwicklungsmech 100: 599–638

    Google Scholar 

  • Stein S, Kessel M (1995) A homeobox gene involved in node, notochord and neural plate formation of chick embryos. Mech Dev 49: 37–48

    Article  PubMed  CAS  Google Scholar 

  • Stein S, Niß K, Kessel M (1996) Differential activation of the clustered homeobox genes CNOT2 and CNOT1 during notogenesis in the chick. Dev Biol 180: 519–533

    Article  PubMed  CAS  Google Scholar 

  • Stein S, Roeser T, Kessel M (1998) CMIX, a paired-type homeobox gene expressed before and during formation of the avian primitive streak. Mech Dev 75: 175–177

    Article  Google Scholar 

  • Storey KG, Goriely A, Sargent CM, Brown J, Burns HD, Abud HM, Heath JK (1998) Early posterior neural tissue is induced by FGF in the chick embryo. Development 125: 473–484

    PubMed  CAS  Google Scholar 

  • Streit A, Lee KJ, Woo I, Roberts C, Jessell TM, Stern CD (1998) Chordin regulates primitive streak development and the stability of induced neural cells, but is not sufficient for neural induction in the chick embryo. Development 125: 507–519

    PubMed  CAS  Google Scholar 

  • Streit A, Berliner AJ, Papanayotou C, Sirulnik A, Stern CD (2000) Initiation of neural induction by FGF signalling before gastrulation. Nature 406: 74–78

    Article  PubMed  CAS  Google Scholar 

  • Tsukui T, Capdevila J, Tamura K, Ruiz-Lozano P, Rodriguez-Esteban C, Yonei-Tamura S, Ma-gallon J, Chandraratna RAS, Chien K, Blumberg B, Evans RM, Belmonte JCI (1999) Multiple left-right asymmetry defects in Shh(-/-) mutant mice unveil a convergence of the Shh and retinoic acid pathways in the control of Lefty-1. Proc Nail Acad Sci USA 96: 11376–11381

    Article  CAS  Google Scholar 

  • Vesque C, Ellis S, Lee A, Szabo M, Thomas P, Beddington R, Placzek M (2000) Development of chick axial mesoderm: specification of prechordal mesoderm by anterior endoderm-derived TGFbeta family signalling. Development 127: 2795–2809

    PubMed  CAS  Google Scholar 

  • Waddington CH (1932) Experiments on the development of chick and duck embryos, cultivated in vitro. Philos Trans R Soc Lond B 221: 179–230

    Article  Google Scholar 

  • Wilson SI, Rydstrom A, Trimborn T, Willert K, Nusse R, Jessell TM, Edlund T (2001) The status of Wnt signalling regulates neural and epidermal fates in the chick embryo. Nature 411: 325–330

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka H, Meno C, Koshiba K, Sugihara M, Itoh H, Ishimaru Y, Inoue T, Ohuchi H, Semina EV, Murray JC, Hamada H, Noji S (1998) Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left-right asymmetry. Cell 94: 299–305

    Article  PubMed  CAS  Google Scholar 

  • Zhu L, Belo JA, de Robertis EM, Stern CD (1999) Goosecoid regulates the neural inducing strength of the mouse node. Dev Biol 216: 276–281

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wittler, L., Spieler, D., Kessel, M. (2004). Hensen’s Node: The Embryonic Organizer of the Chick. In: Grunz, H. (eds) The Vertebrate Organizer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10416-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10416-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05732-8

  • Online ISBN: 978-3-662-10416-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics