Skip to main content

Epidermal, Neuronal and Glial Cell Fate Choice in the Embryo

  • Chapter
The Vertebrate Organizer

Abstract

Development of the embryonic nervous system is characterized by a cascade of complex events. The classical experiments of Spemann and Mangold (1924) using the urodele amphibian model system have established that the initial step in this cascade is an inductive interaction between the dorsal mesoderm and the ectoderm that leads to a diversion of the epidermal lineage towards the neural fate. During this process, called neural induction (Gilbert and Saxen 1993), the ectoderm of the embryo becomes regionalized to form the highly specialized and interconnected regions found later in the adult nervous system (Hamburger 1988). Soon after the neural fate of the ectoderm has been established, cells of the neural anlage differentiate into many different types of neurons and glia. These distinct cells develop in defined temporal and spatial patterns as a result of several classes of signaling molecules and precise local control of gene expression. Thus, immature ectoderm cells are faced with a series of binary choices, first to become an epidermal or a neural cell, then, once the neural fate is established, becoming a neuronal or a glial cell type. In all cases, the underlying mechanism involves reception and integration of extrinsic signals together with early gene activation and repression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2: 287–293

    Article  PubMed  CAS  Google Scholar 

  • Barth LG, Barth LJ (1964) Sequential induction of the presumptive epidermis of the Rana pipiens gastrula. Biol Bull 127: 413–427

    Article  Google Scholar 

  • Bayer SA, Altman J (1991) Neocortical development. Raven Press, New York

    Google Scholar 

  • Bonni A, Sun Y, Nadal-Vicens M, Bhatt A, Frank DA, Rozovsky I, Stahl N, Yancopoulos GD, Greenberg ME (1997) Regulation of gliogenesis in the central nervous system by the JAKSTAT signaling pathway. Science 278: 477–483

    Article  PubMed  CAS  Google Scholar 

  • Bouwmeester T, Kim S, Sasai Y, Lu B, de Robertis EM (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382: 595–601

    Article  PubMed  CAS  Google Scholar 

  • Briscoe J, Ericson J (1999) The specification of neuronal identity by graded Sonic Hedgehog sig-nalling. Semin Cell Dev Biol 10: 353–362

    Article  PubMed  CAS  Google Scholar 

  • Briscoe J, Pierani A, Jessell TM, Ericson J (2000) A homeodomain protein code specifies progeni- tor cell identity and neuronal fate in the ventral neural tube. Cell 101: 435–445

    Article  PubMed  CAS  Google Scholar 

  • Campbell K, Götz M (2002) Radial glia: multi-purpose cells for vertebrate brain development. Trends Neurosci 25: 235–238

    Article  PubMed  CAS  Google Scholar 

  • Chambers CB, Peng Y, Nguyen H, Gaiano N, Fishell G, Nye JS (2001) Spatiotemporal selectivity of response to Notchl signals in mammalian forebrain precursors. Development 128: 689–702

    PubMed  CAS  Google Scholar 

  • Chang C, Hemmati-Brivanlou A (1998) Cell fate determination in embryonic ectoderm. J Neu-robiol 36: 128–151

    CAS  Google Scholar 

  • Choi BH, Kim RC (1985) Expression of glial fibrillary acidic protein by immature oligodendroglia and its implications. J Neuroimmunol 8: 215–235

    Article  PubMed  CAS  Google Scholar 

  • Cox WG, Hemmati-Brivanlou A (1995) Caudalization of neural fate by tissue recombination and bFGF. Development 121: 4349–4358

    PubMed  CAS  Google Scholar 

  • Dale L, Jones CM (1999) BMP signalling in early Xenopus development. Bioessays 21: 751–760

    Article  PubMed  CAS  Google Scholar 

  • Derynck R, Zhang Y, Feng XH (1998) Smads: transcriptional activators of TGF-beta responses. Cell 95: 737–740

    Article  PubMed  CAS  Google Scholar 

  • Distasi C, Munaron L, Laezza F, Lovisolo D (1995) Basic fibroblast growth factor opens calcium-permeable channels in quail mesencephalic neural crest neurons. Eur J Neurosci 7: 516–520

    Article  PubMed  CAS  Google Scholar 

  • Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97: 703–716

    Article  PubMed  CAS  Google Scholar 

  • Drean G, Leclerc C, Duprat AM, Moreau M (1995) Expression of L-type Ca2+ channel during early embryogenesis in Xenopus laevis. Int J Dev Biol 39: 1027–1032

    PubMed  CAS  Google Scholar 

  • Ecochard V, Cayrol C, Foulquier F, Zaraisky A, Duprat AM (1995) A novel TGF-beta-like gene, fugacin, specifically expressed in the Spemann organizer of Xenopus. Dev Biol 172: 699–703

    Article  PubMed  CAS  Google Scholar 

  • Ericson J, Briscoe J, Rashbass P, van Heyningen V, Jessell TM (1997) Graded sonic hedgehog signaling and the specification of cell fate in the ventral neural tube. Cold Spring Harbor Symp Quant Biol 62: 451–466

    Article  PubMed  CAS  Google Scholar 

  • Fainsod A, Deissler K, Yelin R, Marom K, Epstein M, Pillemer G, Steinbeisser H, Blum M (1997) The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4. Mech Dev 63: 39–50

    Article  PubMed  CAS  Google Scholar 

  • Faure S, Lee MA, Keller T, ten Dijke P, Whitman M (2000) Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development. Development 127: 2917–2931

    PubMed  CAS  Google Scholar 

  • Fu H, Qi Y, Tan M, Cai J, Takebayashi H, Nakafuku M, Richardson W, Qiu M (2002) Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of Olig2 and Nkx22 in the control of oligodendrocyte differentiation. Development 129: 681–693

    PubMed  CAS  Google Scholar 

  • Furukawa T, Mukherjee S, Bao ZZ, Morrow EM, Cepko CL (2000) Rax, Hesl, and notchl promote the formation of Muller glia by postnatal retinal progenitor cells. Neuron 26: 383–394

    Google Scholar 

  • Gaiano N, Nye JS, Fishell G (2000) Radial glial identity is promoted by Notchl signaling in the murine forebrain. Neuron 26: 395–404

    Article  PubMed  CAS  Google Scholar 

  • Gawantka V, Delius H, Hirschfeld K, Blumenstock C, Niehrs C (1995) Antagonizing the Spemann organizer role of the homeobox gene Xvent-1. EMBO J 14: 6268–6279

    PubMed  CAS  Google Scholar 

  • Giess MC, Soula C, Duprat AM, Cochard P (1992) Cells from the early chick optic nerve generate neurons but not oligodendrocytes in vitro. Brain Res Dev Brain Res 70: 163–171

    Article  PubMed  CAS  Google Scholar 

  • Gilbert SF, Saxen L (1993) Spemann’s organizer: models and molecules. Mech Dev 41: 73–89

    Article  PubMed  CAS  Google Scholar 

  • Gillespie LL, Paterno GD, Mahadevan LC, Slack JM (1992) Intracellular signalling pathways involved in mesoderm induction by FGF. Mech Dev 38: 99–107

    Article  PubMed  CAS  Google Scholar 

  • Gray GE, Sanes JR (1992) Lineage of radial glia in the chicken optic tectum. Development 114: 271–283

    PubMed  CAS  Google Scholar 

  • Greenberg DA, Carpenter CL, Messing RO (1987) Lectin-induced enhancement of voltage-de-pendent calcium flux and calcium channel antagonist binding. J Neurochem 48: 888–894

    Article  PubMed  CAS  Google Scholar 

  • Greenberg ME, Thompson MA, Sheng M (1992) Calcium regulation of immediate early gene transcription. J Physiol Paris 86: 99–108

    Article  PubMed  CAS  Google Scholar 

  • Grunz H, Tacke L (1989) Neural differentiation of Xenopus laevis ectoderm takes place after disaggregation and delayed reaggregation without inducer. Cell Differ Dev 28: 211–217

    Article  PubMed  CAS  Google Scholar 

  • Gualandris L, Rouge P, Duprat AM (1983) Membrane changes in neural target cells studied with fluorescent lectin probes. J Embryol Exp Morphol 77: 183–200

    PubMed  CAS  Google Scholar 

  • Gualandris L, Rouge P, Duprat AM (1985) Target cell surface glycoconjugates and neural induction in an amphibian. J Embryol Exp Morphol 86: 39–51

    PubMed  CAS  Google Scholar 

  • Hajihosseini M, Tham TN, Dubois-Dalcq M (1996) Origin of oligodendrocytes within the human spinal cord. J Neurosci 16: 7981–7994

    PubMed  CAS  Google Scholar 

  • Halliday AL, Cepko CL (1992) Generation and migration of cells in the developing striatum. Neuron 9: 15–26

    Article  PubMed  CAS  Google Scholar 

  • Hamburger V (ed) (1988) The heritage of experimental embryology: Hans Spemann and the organizer. Oxford University Press, Oxford

    Google Scholar 

  • Hansen CS, Marion CD, Steele K, George S, Smith WC (1997) Direct neural induction and selective inhibition of mesoderm and epidermis inducers by Xnr3. Development 124: 483–492

    PubMed  CAS  Google Scholar 

  • Hawley SH, Wunnenberg-Stapleton K, Hashimoto C, Laurent MN, Watabe T, Blumberg BW, Cho KW (1995) Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev 9: 2923–2935

    Article  PubMed  CAS  Google Scholar 

  • Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390: 465–471

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Melton DA (1992) A truncated activin receptor inhibits mesoderm in-duction and formation of axial structures in Xenopus embryos. Nature 359: 609–614

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Melton DA (1994) Inhibition of activin receptor signaling promotes neur-alization in Xenopus. Cell 77: 273–281

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Thomsen GH (1995) Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4. Dev Genet 17: 78–89

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Kelly OG, Melton DA (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77: 283–295

    Article  PubMed  CAS  Google Scholar 

  • Henrique D, Tyler D, Kintner C, Heath JK, Lewis JH, Ish-Horowicz D, Storey KG (1997) Cash4, a novel achaete-scute homolog induced by Hensen’s node during generation of the posterior nervous system. Genes Dev 11: 603–615

    Article  PubMed  CAS  Google Scholar 

  • Hojo M, Ohtsuka T, Hashimoto N, Gradwohl G, Guillemot F, Kageyama R (2000) Glial cell fate specification modulated by the bHLH gene HesS in mouse retina. Development 127: 2515–2522

    PubMed  CAS  Google Scholar 

  • Holfreter J (1945) Neuralization and epidermalization of gastrula ectoderm. J Exp Zool 98: 161–209

    Article  Google Scholar 

  • Iemura S, Yamamoto TS, Takagi C, Kobayashi H, Ueno N (1999) Isolation and characterization of bone morphogenetic protein-binding proteins from the early Xenopus embryo. J Biol Chem 274: 26843–26849

    Article  PubMed  CAS  Google Scholar 

  • Itoh S, Itoh F, Goumans MJ, Ten Dijke P (2000) Signaling of transforming growth factor-beta family members through Smad proteins. Eur J Biochem 267: 6954–6967

    Article  PubMed  CAS  Google Scholar 

  • Kengaku M, Okamoto H (1995) bFGF as a possible morphogen for the anteroposterior axis of the central nervous system in Xenopus. Development 121: 3121–3130

    Google Scholar 

  • Kettenmann H, Backus KH, Schachner M (1984) Aspartate, glutamate and gamma-aminobutyric acid depolarize cultured astrocytes. Neurosci Lett 52: 25–29

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Raff M (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289: 1754–1757

    Article  PubMed  CAS  Google Scholar 

  • Kroll KL, Amaya E (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122: 3173–3183

    PubMed  CAS  Google Scholar 

  • Kroll KL, Salic AN, Evans LM, Kirschner MW (1998) Geminin, a neuralizing molecule that de- marcates the future neural plate at the onset of gastrulation. Development 125: 3247–3258

    PubMed  CAS  Google Scholar 

  • Ladher R, Mohun TJ, Smith JC, Snape AM (1996) Xom: a Xenopus homeobox gene that mediates the early effects of BMP-4. Development 122: 2385–2394

    PubMed  CAS  Google Scholar 

  • Lamb TM, Harland RM (1995) Fibroblast growth factor is a direct neural inducer, which com-bined with noggin generates anterior-posterior neural pattern. Development 121: 3627–3636

    PubMed  CAS  Google Scholar 

  • Lamb TM, Knecht AK, Smith WC, Stachel SE, Economides AN, Stahl N, Yancopolous GD, Har-land RM (1993) Neural induction by the secreted polypeptide noggin. Science 262: 713–718

    Article  PubMed  CAS  Google Scholar 

  • Launay C, Fromentoux V, Shi DL, Boucaut JC (1996) A truncated FGF receptor blocks neural induction by endogenous Xenopus inducers. Development 122: 869–880

    PubMed  CAS  Google Scholar 

  • Laywell ED, Rakic P, Kukekov VG, Holland EC, Steindler DA (2000) Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci USA 97: 13883–13888

    Article  PubMed  CAS  Google Scholar 

  • Leclerc C, Duprat AM, Moreau M (1995a) In vivo labelling of L-type Ca2+ channels by fluorescent dihydropyridine: correlation between ontogenesis of the channels and the acquisition of neural competence in ecotderm cells from Pleurodeles waltl embryos. Cell Calcium 17: 216–224

    Article  PubMed  CAS  Google Scholar 

  • Leclerc C, Moreau M, Gualandris-Parisot L, Drean G, Canaux S, Duprat A (1995b) An elevation of internal calcium occuring via L-types channels mediates neural induction in the amphibian embryo. In: Zagris N, Duprat A, Durston J (eds) Organisation of the early vertebrate. Plenum Press, New York, pp 209–226

    Google Scholar 

  • Leclerc C, Daguzan C, Nicolas MT, Chabret C, Duprat AM, Moreau M (1997) L-type calcium channel activation controls the in vivo transduction of the neuralizing signal in the amphibian embryos. Mech Dev 64: 105–110

    Article  PubMed  CAS  Google Scholar 

  • Leclerc C, Duprat AM, Moreau M (1999) Noggin upregulates Fos expression by a calcium-mediated pathway in amphibian embryos. Dev Growth Differ 41: 227–238

    Article  PubMed  CAS  Google Scholar 

  • Leclerc C, Rizzo C, Daguzan C, Neant I, Batut J, Auge B, Moreau M (2001) Neural determination in Xenopus laevis embryos: control of early neural gene expression by calcium. J Soc Biol 195: 327–337

    PubMed  CAS  Google Scholar 

  • Leclerc C, Webb SE, Daguzan C, Moreau M, Miller AL (2000) Imaging patterns of calcium tran- sients during neural induction in Xenopus laevis embryos. J Cell Sci 113: 3519–3529

    PubMed  CAS  Google Scholar 

  • Leclerc C, Lee M, Webb SE, Miller AL, Moreau M (2003) Calcium transients triggered by planar signals induce the expression of Zic3 during neutral induction in Xenopus. Dev. Biol. (in press)

    Google Scholar 

  • Leonard WJ, O’Shea JJ (1998) Jaks and STATs: biological implications. Annu Rev Immunol 16: 293–322

    Article  PubMed  CAS  Google Scholar 

  • LeSueur JA, Fortuno ES III, McKay RM, Graff JM (2002) Smad10 is required for formation of the frog nervous system. Dev Cell 2: 771–783

    Article  PubMed  CAS  Google Scholar 

  • Lu QR, Yuk D, Alberta JA, Zhu Z, Pawlitzky I, Chan J, McMahon AP, Stiles CD, Rowitch DH (2000) Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25: 317–329

    Article  PubMed  CAS  Google Scholar 

  • Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD, Rowitch DH (2002) Common developmental requirement for oligo function indicates a motor neuron/oligodendrocyte connection. Cell 109: 75–86

    Article  PubMed  CAS  Google Scholar 

  • Mabie PC, Mehler MF, Marmur R, Papavasiliou A, Song Q, Kessler JA (1997) Bone morphogenetic proteins induce astroglial differentiation of oligodendroglial-astroglial progenitor cells. J Neurosci 17: 4112–4120

    PubMed  CAS  Google Scholar 

  • Malatesta P, Hartfuss E, Gotz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127: 5253–5263

    PubMed  CAS  Google Scholar 

  • Massague J, Wotton D (2000) Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19: 1745–1754

    Article  PubMed  CAS  Google Scholar 

  • Mehler MF, Mabie PC, Zhu G, Gokhan S, Kessler JA (2000) Developmental changes in progenitor cell responsiveness to bone morphogenetic proteins differentially modulate progressive CNS lineage fate. Dev Neurosci 22: 74–85

    Article  PubMed  CAS  Google Scholar 

  • Mekki-Dauriac S, Agius E, Kan P, Cochard P (2002) Bone morphogenetic proteins negatively control oligodendrocyte precursor specification in the chick spinal cord. Development 129: 5117–5130

    PubMed  CAS  Google Scholar 

  • Miller AL, Karplus E, Jaffe LF (1994) Imaging [Ca2+]i with aequorin using a photon imaging detector. Methods Cell Biol 40: 305–338

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Kawaguchi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31: 727–741

    Article  PubMed  CAS  Google Scholar 

  • Mizuseki K, Kishi M, Matsui M, Nakanishi S, Sasai Y (1998) Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction. Development 125: 579–587

    Google Scholar 

  • Moreau M, Leclerc C, Gualandris-Parisot L, Duprat A-M (1994) Increased internal Ca2+ mediates neural induction in the amphibian embryo. Proc Natl Acad Sci USA 91: 12639–12643

    Article  PubMed  CAS  Google Scholar 

  • Morrison SJ, Perez SE, Qiao Z, Verdi JM, Hicks C, Weinmaster G, Anderson DJ (2000) Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101: 499–510

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Sakakibara S, Miyata T, Ogawa M, Shimazaki T, Weiss S, Kageyama R, Okano H (2000) The bHLH gene hest as a repressor of the neuronal commitment of CNS stem cells. J Neurosci 20: 283–293

    PubMed  CAS  Google Scholar 

  • Nakata K, Nagai T, Aruga J, Mikoshiba K (1997) Xenopus Zic3, a primary regulator both in neural and neural crest development. Proc Natl Acad Sci USA 94: 11980–11985

    Google Scholar 

  • Nery S, Wichterle H, Fishell G (2001) Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development 128: 527–540

    PubMed  CAS  Google Scholar 

  • Nieto M, Schuurmans C, Britz O, Guillemot F (2001) Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29: 401–413

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop P, Johnen A, Albers B (1985) The epigenetic nature of early chordate development. Inductive interaction and competence. Development and cell biology, series 16. Cambridge University Press, Cambridge

    Google Scholar 

  • Nishinakamura R, Matsumoto Y, Uochi T, Asashima M, Yokota T (1997) Xenopus FK 506-binding protein homolog induces a secondary axis in frog embryos, which is inhibited by coexisting BMP 4 signaling. Biochem Biophys Res Commun 239: 585–591

    Google Scholar 

  • Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409: 714–720

    Article  PubMed  CAS  Google Scholar 

  • Noll E, Miller RH (1993) Oligodendrocyte precursors originate at the ventral ventricular zone dorsal to the ventral midline region in the embryonic rat spinal cord. Development 118: 563–573

    PubMed  CAS  Google Scholar 

  • Ohtsuka T, Sakamoto M, Guillemot F, Kageyama R (2001) Roles of the basic helix-loop-helix genes Hesl and Hess in expansion of neural stem cells of the developing brain. J Biol Chem 276: 30467–30474

    Article  PubMed  CAS  Google Scholar 

  • Olivier C, Cobos I, Perez-Villegas EM, Spassky N, Zalc B, Martinez S, Thomas JL (2001) Mono-focal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo. Development 128: 1757–1769

    PubMed  CAS  Google Scholar 

  • Onichtchouk D, Gawantka V, Dosch R, Delius H, Hirschfeld K, Blumenstock C, Niehrs C (1996) The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controlling dorsoventral patterning of Xenopus mesoderm. Development 122: 3045–3053

    PubMed  CAS  Google Scholar 

  • Ono K, Bansal R, Payne J, Rutishauser U, Miller RH (1995) Early development and dispersal of oligodendrocyte precursors in the embryonic chick spinal cord. Development 121: 1743–1754

    PubMed  CAS  Google Scholar 

  • Ono K, Yasui Y, Rutishauser U, Miller RH (1997) Focal ventricular origin and migration of oli-godendrocyte precursors into the chick optic nerve. Neuron 19: 283–292

    Article  PubMed  CAS  Google Scholar 

  • Orentas DM, Miller RH (1996) The origin of spinal cord oligodendrocytes is dependent on local influences from the notochord. Dev Biol 177: 43–53

    Article  PubMed  CAS  Google Scholar 

  • Orentas DM, Hayes JE, Dyer KL, Miller RH (1999) Sonic hedgehog signaling is required during the appearance of spinal cord oligodendrocyte precursors. Development 126: 2419–2429

    PubMed  CAS  Google Scholar 

  • Otte AP, Moon RT (1992) Protein kinase C isozymes have distinct roles in neural induction and competence in Xenopus. Cell 68: 1021–1029

    Article  PubMed  CAS  Google Scholar 

  • Otte AP, Kramer IM, Durston AJ (1991) Protein kinase C and regulation of the local competence of Xenopus ectoderm. Science 251: 570–573

    Article  PubMed  CAS  Google Scholar 

  • Otte AP, McGrew LL, Olate J, Nathanson NM, Moon RT (1992) Expression and potential functions of G-protein alpha subunits in embryos of Xenopus laevis. Development 116: 141–146

    PubMed  CAS  Google Scholar 

  • Perez-Villegas EM, Olivier C, Spassky N, Poncet C, Cochard P, Zalc B, Thomas JL, Martinez S (1999) Early specification of oligodendrocytes in the chick embryonic brain. Dev Biol 216: 98–113

    Article  PubMed  CAS  Google Scholar 

  • Piccolo S, Sasai Y, Lu B, de Robertis EM (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86: 589–598

    Article  PubMed  CAS  Google Scholar 

  • Piek E, Heldin CH, Ten Dijke P (1999) Specificity, diversity, and regulation in TGF-beta super-family signaling. Faseb J 13: 2105–2124

    PubMed  CAS  Google Scholar 

  • Pituello F, Homburger V, Saint-Jeannet JP, Audigier Y, Bockaert J, Duprat AM (1991) Expression of the guanine nucleotide-binding protein Go correlates with the state of neural competence in the amphibian embryo. Dev Biol 145: 311–322

    Article  PubMed  CAS  Google Scholar 

  • Poncet C, Soula C, Trousse F, Kan P, Hirsinger E, Pourquie O, Duprat AM, Cochard P (1996) Induction of oligodendrocyte progenitors in the trunk neural tube by ventralizing signals: effects of notochord and floor plate grafts, and of sonic hedgehog. Mech Dev 60: 13–32

    Article  PubMed  CAS  Google Scholar 

  • Pringle NP, Richardson WD (1993) A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development 117: 525–533

    PubMed  CAS  Google Scholar 

  • Pringle NP, Yu WP, Guthrie S, Roelink H, Lumsden A, Peterson AC, Richardson WD (1996) Determination of neuroepithelial cell fate: induction of the oligodendrocyte lineage by ventral midline cells and sonic hedgehog. Dev Biol 177: 30–42

    Article  PubMed  CAS  Google Scholar 

  • Qi Y, Cai J, Wu Y, Wu R, Lee J, Fu H, Rao M, Sussel L, Rubenstein J, Qiu M (2001) Control of oligodendrocyte differentiation by the Nkx22 homeodomain transcription factor. Development 128: 2723–2733

    PubMed  CAS  Google Scholar 

  • Saint-Jeannet J, Huang S, Duprat A (1989) Target cell contacts and neural commitment in Pleurodeles waltl. Cell Differ 27: 165

    Google Scholar 

  • Saint-Jeannet JP, Huang S, Duprat AM (1990) Modulation of neural commitment by changes in target cell contacts in Pleurodeles waltl. Dev Biol 141: 93–103

    Article  PubMed  CAS  Google Scholar 

  • Saint-Jeannet JP, Pituello F, Huang S, Foulquier F, Duprat AM (1993) Experimentally provoked neural induction results in an incomplete expression of neuronal traits. Exp Cell Res 207: 383–387

    Article  PubMed  CAS  Google Scholar 

  • Saneyoshi T, Kume S, Natsume T, Mikoshiba K (2000) Molecular cloning and expression profile of Xenopus calcineurin A subunit(1). Biochim Biophys Acta 1499: 164–170

    Article  PubMed  CAS  Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, de Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79: 779–790

    Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, de Robertis EM (1995) Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 377: 757

    Article  PubMed  CAS  Google Scholar 

  • Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21: 7153–7160

    PubMed  CAS  Google Scholar 

  • Small RK, Riddle P, Noble M (1987) Evidence for migration of oligodendrocyte-type-2 astrocyte progenitor cells into the developing rat optic nerve. Nature 328: 155–157

    Article  PubMed  CAS  Google Scholar 

  • Smith WC, McKendry R, Ribisi S Jr, Harland RM (1995) A nodal-related gene defines a physical and functional domain within the Spemann organizer. Cell 82: 37–46

    Article  PubMed  CAS  Google Scholar 

  • Solecki DJ, Liu XL, Tomoda T, Fang Y, Hatten ME (2001) Activated Notch2 signaling inhibits differentiation of cerebellar granule neuron precursors by maintaining proliferation. Neuron 31: 557–568

    Article  PubMed  CAS  Google Scholar 

  • Sontheimer H, Black JA, Ransom BR, Waxman SG (1992) Ion channels in spinal cord astrocytes in vitro. I. Transient expression of high levels of Na+ and K+ channels. J Neurophysiol 68: 985–1000

    Google Scholar 

  • Soula C, Danesin C, Kan P, Grob M, Poncet C, Cochard P (2001) Distinct sites of origin of oligodendrocytes and somatic motoneurons in the chick spinal cord: oligodendrocytes arise from Nkx22-expressing progenitors by a Shh-dependent mechanism. Development 128: 1369–1379

    PubMed  CAS  Google Scholar 

  • Spassky N, Goujet-Zalc C, Parmantier E, Olivier C, Martinez S, Ivanova A, Ikenaka K, Macklin W, Cerruti I, Zalc B, Thomas JL (1998) Multiple restricted origin of oligodendrocytes. J Neurosci 18: 8331–8343

    PubMed  CAS  Google Scholar 

  • Spassky N, Olivier C, Perez-Villegas E, Goujet-Zalc C, Martinez S, Thomas J, Zalc B (2000) Single or multiple oligodendroglial lineages: a controversy. Glia 29: 143–148

    Article  PubMed  CAS  Google Scholar 

  • Spemann H, Mangold H (1924) Über die Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Roux’s Arch Entw Mech Org 100: 599–638

    Google Scholar 

  • Sun Y, Nadal-Vicens M, Misono S, Lin MZ, Zubiaga A, Hua X, Fan G, Greenberg ME (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104: 365–376

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, Shioda N, Ueno N (1995) Bone morphogenetic protein acts as a ventral mesoderm modifier in early Xenopus embryos. Dev Growth Differ 37: 581–588

    Article  CAS  Google Scholar 

  • Suzuki A, Kaneko E, Ueno N, Hemmati-Brivanlou A (1997) Regulation of epidermal induction by BMP2 and BMP7 signaling. Dev Biol 189: 112–122

    Article  PubMed  Google Scholar 

  • Takata K, Yamamoto K, Ozawa R (1981) Use of lectins as probes for analyzing embryonic induction. Roux’s Arch Dev Biol 190: 92–96

    Article  CAS  Google Scholar 

  • Tanigaki K, Nogaki F, Takahashi J, Tashiro K, Kurooka H, Honjo T (2001) Notchl and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron 29: 45–55

    Article  PubMed  CAS  Google Scholar 

  • Timsit S, Martinez S, Allinquant B, Peyron F, Puelles L, Zak B (1995) Oligodendrocytes originate in a restricted zone of the embryonic ventral neural tube defined by DM-20 mRNA expression. J Neurosci 15: 1012–1024

    PubMed  CAS  Google Scholar 

  • Tomita K, Moriyoshi K, Nakanishi S, Guillemot F, Kageyama R (2000) Mammalian achaete-scute and atonal homologs regulate neuronal versus glial fate determination in the central nervous system. EMBO J 19: 5460–5472

    Article  PubMed  CAS  Google Scholar 

  • Trousse F, Giess MC, Soula C, Ghandour S, Duprat AM, Cochard P (1995) Notochord and floor plate stimulate oligodendrocyte differentiation in cultures of the chick dorsal neural tube. J Neurosci Res 41: 552–560

    Article  PubMed  CAS  Google Scholar 

  • Vetter ML, Brown NL (2001) The role of basic helix-loop-helix genes in vertebrate retinogenesis. Semin Cell Dev Biol 12: 491–498

    Article  PubMed  CAS  Google Scholar 

  • Wada T, Kagawa T, Ivanova A, Zalc B, Shirasaki R, Murakami F, Iemura S, Ueno N, Ikenaka K (2000) Dorsal spinal cord inhibits oligodendrocyte development. Dev Biol 227: 42–55

    Article  PubMed  CAS  Google Scholar 

  • Warf BC, Fok-Seang J, Miller RH (1991) Evidence for the ventral origin of oligodendrocyte pre-cursors in the rat spinal cord. J Neurosci 11: 2477–2488

    PubMed  CAS  Google Scholar 

  • Weinstein DC, Hemmati-Brivanlou A (1999) Neural induction. Annu Rev Cell Dev Biol 15: 41 1433

    Google Scholar 

  • Wilson PA, Hemmati-Brivanlou A (1995) Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376: 331–333

    Article  PubMed  CAS  Google Scholar 

  • Wilson PA, Lagna G, Suzuki A, Hemmati-Brivanlou A (1997) Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smadl. Development 124: 3177–3184

    PubMed  CAS  Google Scholar 

  • Witta SE, Agarwal VR, Sato SM (1995) XIPOU 2, a noggin-inducible gene, has direct neuralizing activity. Development 121: 721–730

    PubMed  CAS  Google Scholar 

  • Xu RH, Kim J, Taira M, Zhan S, Sredni D, Kung HF (1995) A dominant negative bone morpho-genetic protein 4 receptor causes neuralization in Xenopus ectoderm. Biochem Biophys Res Commun 212: 212–219

    Article  PubMed  CAS  Google Scholar 

  • Yu WP, Collarini EJ, Pringle NP, Richardson WD (1994) Embryonic expression of myelin genes: evidence for a focal source of oligodendrocyte precursors in the ventricular zone of the neural tube. Neuron 12: 1353–1362

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Anderson DJ (2002) The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109: 61–73

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Wang S, Anderson DJ (2000) Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 25: 331–343

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Choi G, Anderson DJ (2001) The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31: 791–807

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman LB, de Jesus-Escobar JM, Harland RM (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86: 599–60

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moreau, M., Cochard, P., Duprat, AM. (2004). Epidermal, Neuronal and Glial Cell Fate Choice in the Embryo. In: Grunz, H. (eds) The Vertebrate Organizer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10416-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10416-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05732-8

  • Online ISBN: 978-3-662-10416-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics