Insecticidal and Nematicidal Metabolites from Fungi

  • H. Anke
  • O. Sterner
Part of the The Mycota book series (MYCOTA, volume 10)


Even though their fungal nature may not have been recognised as such, fungi growing on insects or their larvae have long drawn the interest of naturalists. Prominent examples are Cordyceps species and the silkworm diseases, white and green muscardine, caused by Beauveria bassiana and Metarhizium anisopliae. Even today these fungi and their interactions with their hosts are still a matter of investigations. A modern pictorial overview on entomopathogenic fungi is given by Samson et al. (1988). Fungal diseases are dealt with by Carruthers and Soper (1987) and the underlying biochemistry and molecular biology have been described by Khachatourians (Chap. 17, vol. VI) and others.


Fruit Body Insecticidal Activity Ibotenic Acid Nematophagous Fungus Nematicidal Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addor RW (1995) Insecticides. In: Godfrey CRA (ed) Agrochemicals from natural products. Dekker, New York, pp 1–62Google Scholar
  2. Ahren D, Ursing BM, Tunlid A (1998) Phylogeny of nematode-trapping fungi based on 18 S rDNA sequences. FEMS Microbiol Lett 158: 179–184Google Scholar
  3. Anderson MG, Jarman TB, Rickards RW (1995) Structures and absolute configuration of antibiotics of the oligorosporon group from the nematode-trapping fungus Arthrobotrys oligospora. J Antibiot 48: 391–398Google Scholar
  4. Anderson MG, Rickards RW, Lacey E (1999) Structures of flagranones A, B, and C, cyclohexenoxide antibiotics from the nematode-trapping fungus Duddingtonia fia-grans. J Antibiotics 52: 1023–1028Google Scholar
  5. Anke H, Sterner O (1991) Comparison of the antimicrobial and cytotoxic activities of twenty unsaturated scsquiterpene dialdehydes from plants and mushrooms. Planta Med 57: 344–346Google Scholar
  6. Anke H, Sterner O (1997) Nematicidal compounds from higher fungi. Curr Org Chem 1: 361–374Google Scholar
  7. Anke H, Stadler M, Mayer A, Sterner O (1995) Secondary metabolites with nematicidal and antimicrobial activity from nematophagous fungi and Ascomycetes. Can J Bot 73 (Suppl 1): 932–939Google Scholar
  8. Anke H, Morales P, Sterner O (1996) Assays of the biological activities of two fatty acid derivatives formed in the edible mushrooms Cantharellus cibarius and C. tubaeformis as a response to injury. Planta Med 62: 181–183Google Scholar
  9. Banks RM, Blanflower SE, Everett JR, Manger BR, Reading C (1997) Novel anthelmintic metabolites from an Aspergillus species; the aspergillimides. J Antibiot 50: 840–846Google Scholar
  10. Barron GL (1977) The nematode-destroying fungi. Topics in mycobiology no 1. Lancaster Press, LancasterGoogle Scholar
  11. Belofsky GN, Gloer JB, Wicklow DT, Dowd PF (1998a) Shearamide A: a new cyclic peptide from the ascostromata of Eupenicillium shearii. Tetrahedron Lett 39: 5497–5500Google Scholar
  12. Belofsky GN, Gloer KB, Gloer.B, Wicklow DT, Dowd PF (1998b) New p-terphenyl and polyketide metabolites from the sclerotia of Penicillium raistrickii. J Nat Prod 61: 1115–1119Google Scholar
  13. Berdy J (2000) Bioactive natural product database (BNPD). Szenzor Management consulting Com, BudapestGoogle Scholar
  14. Bergendorff O, Anke H, Dekermendjian K, Nielsen M, Rudong S, Sterner O, Witt R (1994) The affinity of cyclodepsipeptides isolated from Fusarium sp. 43–88 to the brain chloride channel domain of GABAA and dopamine D-1 receptors in vitro. J Antibiot 47: 1560–1561Google Scholar
  15. Betina V (1989) Mycotoxins chemical, biological and environmental aspects. Chapter 13: Cytochalasans. Elsevier, Amsterdam, pp 285–324Google Scholar
  16. Blizzard TA, Ruby CL, Mrozik H, Preiser FA, Fisher MH (1989) Brine shrimp (Artemia sauna) as a convenient bioassay for avermectin analogs. J Antibiot 42: 1304–1307Google Scholar
  17. Bok JW, Lermer L, Chilton J, Klingeman HG, Towers OH (1999) Antitumor sterols from the mycelia of Curdy-ceps sinensis. Phytochemistry 51: 891–898Google Scholar
  18. Bourne JM, Kerry BR (1999) Effect of host plant on the efficacy of Verticillium chlamydosporium as a biological control agent of root-knot nematodes at different nematode densities and fungal application rates. Soil Biol Biochem 31: 75–84Google Scholar
  19. Breen JP (1994) Acremonium endophytc interactions with enhanced plant resistance to insects. Annu Rev Entomol 39:401–423Google Scholar
  20. Bresinsky A, Best H (1985) Giftpilze. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 152–154Google Scholar
  21. Büchel, E, Martini U, Mayer A, Anke H, Sterner O (1998a) Omphalotins B, C, and D, nematicidal cyclopeptides from Omphalotus olearius. Absolute configuration of omphalotin A. Tetrahedron 54: 5345–5352Google Scholar
  22. Büchel E. Mayer A, Martini U, Anke H, Sterner O (1998b) Structure elucidation of omphalotin, a cyclic dodecapeptide with potent nematicidal activity from Omphalotus olearius. Pest Sci 54: 309–311Google Scholar
  23. Burrows PR. Kerry R, Perry RN (1994) New approaches to plant-parasitic nematode control. J Zool Lund 232:341–346Google Scholar
  24. Calhoun LA, Findlay JA, Miller JD, Whitney NJ (1992) Metabolites toxic to spruce budworm from balsam fir needle endophytes. Mycol Res 96: 281–286Google Scholar
  25. Camazine S, Resch J, Eisner T, Meinwald J (1983) Mushroom chemical defense: pungent sesquiterpenoid dialdehyde antifeedant to opossum. J Chem Ecol 10: 1439–1447Google Scholar
  26. Cantin A, Moya P, Miranda MA, Primo J, Primo-Yufera E (1998) Isolation of N-(2-methyl-3-oxodecanoyl) pyrrole and N-(2-methyl-3-oxodec-8-enoyl)pyrrole, two new natural products from Penicillium brevicompactum. and synthesis of analogues with insecticidal and fungicidal activity. J Agric Food Chem 46: 4748–4753Google Scholar
  27. Cantin A, Moya P, Castillo MA, Primo J, Miranda MA, Primo-Yufera E (1999) Isolation and synthesis of N(2-methyl-3-oxodec-8-enoyl)-2-pyrroline and 2-(hept5-enyl)-3-methyl-4-oxo-6,7,8,8a-tetrahydro-4H-pyrrol o[2,1-b]-1,3-oxazine, two new fungal metabolites with in vivo anti-juvenile hormone and insecticidal activity. Eur J Org Chem 1999: 221–226Google Scholar
  28. Carroll GC (1991) Fungal association of woody plants as insect antagonists in leaves and stems. In: Barbosa P, Krischik VA, Jones CG (eds) Microbial mediation of plant-herbivore interactions. Wiley, New York, pp 253–271Google Scholar
  29. Carruthers RI, Soper RS (1987) Fungal diseases. In: Fuxa JR, Tanada Y (eds) Epizootiology of insect diseases. Wiley, New York, pp 357–416Google Scholar
  30. Castillo M. Moya P, Couillaud F, Garcera MD, MartfnezPardo R (1998) A heterocyclic oxime from a fungus with anti-juvenile hormone activity. Arch Insect Biochem Physiol 37: 287–294Google Scholar
  31. Castillo M-A, Moya P, Cantin A, Miranda MA, Primo J, Hernandez E, Primo-Yfifera E (1999) Insecticidal, anti-juvenile hormone, and fungicidal activities of organic extracts from different Penicillium species and their isolated active compounds. J Agric Food Chem 47: 2120–2124Google Scholar
  32. Chapman and Hall (1999) Dictionary of natural products. Chapman and Hall dictionaries on CD-ROMGoogle Scholar
  33. Chitwood DJ (1993) Naturally occurring nematicides. In: Duke SO, Menn JJ, Plimmer JR (eds) Pest control with enhanced environmental safety. American Chemical Society, Washington, DC, pp 300–315Google Scholar
  34. Clay K (1992) Endophytes as antagonists of plant pests. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, Berlin Heidelberg, New York, pp 331–357Google Scholar
  35. Claydon N, Grove JF (1978) Metabolic products of Entomophthora virulenta. J Chem Soc Perkin Trans 1: 171–173Google Scholar
  36. Claydon N, Grove JF, Pople M (1977) Insecticidal secondary metabolic product from the entomogenous fungus Fusarium solani. J Invertebr Pathol 30: 216–223Google Scholar
  37. Cleland TA (1996) Inhibitory glutamate receptor channels. Mol Neurobiol 13: 97–136Google Scholar
  38. Cole LM, Roush RT, Casidia JE (1995) Drosophila GABAgated chloride channel: modified [3HjEBOB binding site associated with AlaaSer or Gly mutants of Rdl subunit. Life Sci 56: 57–765Google Scholar
  39. Cole M, Rolinson GN (1972) Microbial metabolites with insecticidal properties. Appl Microbial 24: 660–463Google Scholar
  40. Daniewski W, Gumulka M, Przesmycka D, Ptaszynska K, B1oszyk E, Drozdz B (1995) Sesquiterpenes of Lac-twills origin, antifeedant structure-activity relationships. Phytochemistry 38: 1161–1168Google Scholar
  41. Davis EI, Meyers DM, Dullum CJ, Feitclson JS (1997) Nematicidal activity of fatty acid esters on soybean cyst and root-knot nematodes. J Nematol 29 (Suppl 4): 677–684Google Scholar
  42. de Hoog GS (1985) Taxonomy of the Dactylaria complex, IV. Dactylaria, Neta, Subulispora and Scolecobasidium. In: de Hoog (ed) Taxonomy of the Dactylaria complex, IV-VI. Stud Mycol 26. CBS, Baarn, pp 160Google Scholar
  43. Djiand C, Pijarowski L (1996) Study of transcuticular permeation kinetics, accumulation, and selective activity of nematicidal dicarboxylic acids. Pesticide Biochem Physiol 56: 12–15Google Scholar
  44. Dowd PF (1992) Insect interactions with mycotoxinproducing fungi and their hosts. In: Bhatnagar D, Lillehoj EB, Arora DK (eds) Handbook of applied mycology: mycotoxins in ecological systems. Dekker, New York, pp 137–155Google Scholar
  45. Dowd PF, Peng FC, Chen JW, Ling KH (1992) Toxicity and anticholinesterase activity of the fungal metabolites territrems to the corn earworm Helicoverpa zea. Entomol Exp Appl 65: 57–64Google Scholar
  46. Duddington CL (1960) The friendly fungi - a new approach to the eelworm problem. Faber and Faber, LondonGoogle Scholar
  47. Dumas C, Robert P, Pais M, Vey A, Quiot JM (1994) Insecticidal and cytotoxic effects of natural and hemisynthetic destruxins. Comp Biochem Physiol Pharmacol Toxicol Endocrinol 108: 195–203Google Scholar
  48. Eldefrawi ME, Abatis M, Filbin MT, Eldefrawi AT (1985) Glutamate and GABA receptors of insect muscles: biochemical identification and interaction with insecticides. In: von Keyserlingk HC, Jäger A, von Szczepanski C (eds) Approaches to new leads for insecticides. Springer, Berlin Heidelberg New York, pp 101–116Google Scholar
  49. Erkel G, Anke T (1997) Products from basidiomycetes. In: Rehm H-J, Reed G, Pithier A, Stadler P (eds) Biotechnology, vol 7. VCH, Weinheim, pp 489–533Google Scholar
  50. Faedo M, Larsen M, Waller PJ (1997) The potential of nematophagous fungi to control the free-living stages of nematode parasites of sheep–comparison between Australian isolates of Arthrobotrys spp. and Duddingtonia ftagrans. Vet Parasitol 72: 149–155Google Scholar
  51. Findlay JA, Buthelezi S, Lavoie R, Pena-Rodriguez L, Miller JD (1995a) Bioactive isocoumarins and related metabolites from conifer endophytes. J Nat Prod 58: 1759–166Google Scholar
  52. Findlay JA, Li G, Penner PE, Miller JD (1995b) Novel diterpenoid insect toxins from a conifer endophyte. J Nat Prod 58: 197–200Google Scholar
  53. Findlay JA, Buthelezi S, Li G, Seveck M. Miller JD (1997) Insect toxins from an endophytic fungus from winter-green. J Nat Prod 60: 1214–1215Google Scholar
  54. Fujioka T, Yao K, Hamano K, Hosoya T, Kagasaki T, Furukawa Y, Haruyama H, Sato S, Koga T, Tsujita Y (1996) Epi-cochlioquinone A, a novel acyl-CoA:cholestrol acyltransferase inhibitor produced by Stachybotrys bisbyi. J Antibiot 49: 409–413Google Scholar
  55. Gasco A, Serafino A, Mortarinin V, Menziani E, Bianco MA, Scurti JC (1974) An antibacterial and antifungal compound from Calvatia lilacina. Tetrahed Lett 38: 3431–3432Google Scholar
  56. Geßner G, Meder S, Rink T, Boheim G, Harder A, Jeschke P, Scherkenbeck J, Londershausen M (1996) lonoph ore and anthelmintic activity of PF 1022 A, aGoogle Scholar
  57. cyclooctadcpsipeptide, arc not related. Pestle Sci 48:399–407Google Scholar
  58. Gloer JB (1995) Antiinsectan natural products from fungal sclerotia. Accts Chem Res 28: 343–350Google Scholar
  59. Gloer JB (1997) Applications of fungal ecology in the search for new bioactive natural products. In: Esser K, Lemke PA (eds) The Mycota, vol IV. Wicklow DT, Söderström B (vol eds) Environmental and microbial relationships. Springer, Berlin Heidelberg New York, pp 249–268Google Scholar
  60. Gomi S. Imamura K, Yaguchi T, Kodama Y, Minowa N, Koyama M (1995) PF1018, a novel insecticidal compound produced by Humicola sp. J Antibiot 47: 571–580Google Scholar
  61. Gupta S, Krasnoff SB, Roberts DW, Renwick JAA, Brinen LS, Clardy J (1991a) Structures of the efrapeptins: potent inhibitors of mitochondrial ATPase from the fungus Tolypocladium niveum. J Am Chem Soc 113: 707–709Google Scholar
  62. Gupta S, Krasnoff SB, Underwood NL, Renwick JA, Roberts DW (1991b) Isolation of beauvericin as an insect toxin from Fusarium semitectum and Fusarium moniliforme var. subglutinans. Mycopathology 115: 185–189Google Scholar
  63. Gupta S, Krasnoff SB, Roberts DW, Renwick JAA, Brinen LS, Clardy J (1992) Structure of efrapeptins from the fungus Tolypocladium niveum. Inhibitors of mitochondria) ATPase. J Org Chem 57: 2306–2313Google Scholar
  64. Hajek AE, St Leger RJ (1994) Interactions between fungal pathogens and insect hosts. Annu Rev Entomol 39: 293–322Google Scholar
  65. Hautzel R, Anke H (1990) Screening of basidiomycetes and ascomycetes for plant growth regulating substances. Introduction of the gibbcrcllic acid induced de-novo synthesis of hydrolytic enzymes in embryoless seeds of Triticum aestivum as test system. Z Naturforsch 45c: 1093–1098Google Scholar
  66. Hayashi H, Takiuchi K, Murao S, Arai M (1989) Structure and insecticidal activity of new indole alkaloids, okaramines A and B, from Penicillium simplicissiumum AK-40. Agric Biol Chem 53: 461–469Google Scholar
  67. Hayashi H, Asabu Y, Murao S, Nakayama M, Arai M (1993a) Penitrem A, as a convulsive factor against silkworm, from Penicillium simplicissimum AK-40. Chem Express 8: 177–180Google Scholar
  68. Hayashi H, Asabu Y, Murao S. Nakayama M, Arai M (1993b) A new congener of penitrems, 6-bromopenitrem E, from Penicillium simplicissimum AK-40. Chem Express 8: 233–236Google Scholar
  69. Hayashi H, Mukaihara M. Murao S. Arai M, Lee AY. Clardy J (1994) Acetoxydchydroaustin, a new bioactive compound, and related compound neoaustin from Penicillium sp. MG-11. Biosci Biotech Biochem 58: 334–338Google Scholar
  70. Hayashi H, Asabu Y, Murao S, Nakayama M, Arai M (1995) New okaramine congeners, okaramines D, E, and F, from Penicillium simplicissimum AK-40. Biosci Biotech Biochem 59: 246–250Google Scholar
  71. Hayashi H, Nakatani T, Inoue Y, Nakayama M, Nozaki H (1997) New dihydroquinolinone toxic to Artemia salina produced by Penicillium sp. NTC-47. Biosci Biotech Biochem 61: 914–916Google Scholar
  72. Hayashi H, Nishimoto Y, Akiyama K, Nozaki H (2000) New paralytic alkaloids, asperparalines A, B, and C, from Aspergillus japonicus JV-23. Biosci Biotechnol Biochem 64: 111–115Google Scholar
  73. Hensens OD, Ondeyka JG, Dombrowski AW, Ostlind DA, Zink DL (1999) Isolation and structure of nodulisporic acid A, and A2, novel insecticides from a Nodulisporium sp. Tetrahedron Lett 40: 5455–5458Google Scholar
  74. Hiromoto B (1998) International patent WO 98/58618. Composition having nematicidal activityGoogle Scholar
  75. Hohn TM (1997) Fungal phytotoxins: biosynthesis and activity. In: Esser K, Lemke PA (eds) The Mycota, vol VA. Caroll GC, Tudzynski P (vol eds) Plant relationships. Springer, Berlin Heidelberg New York. pp 129–144Google Scholar
  76. Hosoya T (1998) Application of underutilized mircobial resources in drug discovery: a review focused on discomycetes. Annu Rep Sankyo Res Lab 50: 15–40Google Scholar
  77. Jaffee BA (1998) Susceptibility of a cyst and root-knot nematode to three nematode-trapping fungi. Fundam Appl Nematol 21: 695–703Google Scholar
  78. Jansen BJM, de Groot A (1991) The occurrence and biological activity of driman sesquiterpenoids. Nat Prod Rep 8: 309–318Google Scholar
  79. Jansson H-B, Nordbring-Hertz B (1980) Interactions between nematophagous fungi and plant-parasitic nematodes: attraction, induction of trap formation and capture. Nematologia 26: 383–389Google Scholar
  80. Jansson H-B, Tunlid A, Nordbring-Hertz B (1997) Nematodes. In: Anke T (ed) Fungal biotechnology. Chapman and Hall, Weinheim, pp 38–50Google Scholar
  81. Jegorov A, Sedmera P, Havlicek V. Matha V (1998) Destruxin Ed, a cyclopcptidc from the fungus Metarhizium anisopliae. Phytochemistry 49: 1815–1817Google Scholar
  82. Johnson A, Whitney NJ (1994) Cytotoxicity and insecticidal activity of endophytic fungi from black spruce (Picea mariana) needles. Can J Microbiol 40: 24–27Google Scholar
  83. Jonassohn M, Sterner O, Anke H (1996) Structure-activity relationships for unsaturated dialdehydes 12. The reactivity of unsaturated dialdehydes towards triacetic acid lactonc. Tetrahedron 52: 1473–1478Google Scholar
  84. Ju Y, Sacalis JN, Still CC (1998) Bioactive flavonoids from endophyte-infected blue grass (Pou ampla). J Agric Food Chem 46: 3785–3788Google Scholar
  85. Khachatourians GG (1996) Biochemistry and molecular biology of entomopathogenic fungi. In: Esser K, Lemke PA (eds) The Mycota. vol VI. Howard DH, Miller JD (vol eds) Human and animal relationships. Springer, Berlin Heidelberg New York, pp 331–363Google Scholar
  86. Köpcke B (1999) Pilze als Produzenten nematizider and anderer Sekundärmetabolite. Dissertation, Univ Kaiserslautern, 1999Google Scholar
  87. Köpcke B, Mayer A, Anke H, Sterner O (1999) Bioactive azo-and azoxyformamides from Lycoperdon pyrifbrme (Schaeff. ex Pers. ). Nat Prod Lett 13: 41–46Google Scholar
  88. Krasnoff SB, Gupta S (1991) Identification and directed biosynthesis of efrapeptins in the fungus Tolypocladium geodes Gams ( Deuteromycotina: Hyphomycetes). J Chem Ecol 17: 1953–1962Google Scholar
  89. Krasnoff SB, Gibson DM, Belofsky GN, Oloer KB, Gloer JB (1996) New destruxins from the entomopathogenic fungus Aschersonia sp. J Nat Prod 59: 485–489Google Scholar
  90. Kubo I, Kim M, Wood WF. Naoki H (1986) Clitocine, a new insecticidal nucleoside from the mushroom Clitocybe inversa. Tetrahedron Lett 27:4277–428(1Google Scholar
  91. Kuno F, Otoguro K, Shiomi K, Iwai I, Omura S (1996) Arisugacins A and B, novel and selective acetyl-cholinesterase inhibitors from Penicillium sp. FO-4259. I. Screening, taxonomy, fermentation, isolation and biological activity. J Antibiot 49: 742–747Google Scholar
  92. Leuchtmann A, Clay K (1997) The population biology of grass endophytes. In: Esser K, Lemke PA (eds) The Mycota, vol V, part A. Caron GC, Tudzynski P (vol eds) Plant relationships. Springer, Berlin Heidelberg New York, pp 185–202Google Scholar
  93. Liou GY, Tzean SS (1997) Phylogeny of the genus Arthrobotrys and allied nematode-trapping fungi based on rDNA sequences. Mycologia 89: 876–884Google Scholar
  94. Logrieco A, Moretti A, Castella G, Kostecki M, Golinski P, Ritieni A, Chelkowski J (1998) Beauvericin production by Fusarium species. Appl Environ Mircrobiol 64: 3084–3088Google Scholar
  95. Londershausen M (1996) Approaches to new parasiticides. Pestic Sci 48: 269–292Google Scholar
  96. Malsam O, Kilian M. Hain R, Berg D (1997) Fungal insecticides. In: Anke T (ed) Fungal biotechnology. Chapman and Hall, Weinheim, pp 27–37Google Scholar
  97. Martin RJ, Robertson AP, Bjorn H (1997) Target sites of anthelmintics. Parasitology 114: 5111–5124Google Scholar
  98. Mayer A, Martini U, Anke H, Sterner O, Kilian M. Wachendorff-Neumann U, Harder A, Jeschke P (1996a) Organisch-chemische Verbindungen and Verfahren zu ihrer Herstellung. Patentanmeldung DE 197 54 298. 0Google Scholar
  99. Mayer A, Sterner O, Anke H (1996b) Screening of higher fungi for nematicidal compounds using Meloidogyne incognita (Kofoid & White) Chitwood as test organism. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen, Univ Gent, pp 839–847Google Scholar
  100. Mayer A, Sterner O, Anke H (1997a) Omphalotin, a new cyclic peptide with potent nematicidal activity from Omphalotus olearius. 1. Fermentation and biological activity. Nat Prod Lett 10: 25–33Google Scholar
  101. Mayer A, Anke H, Sterner O. Kilian M. Hain R, Berg D, Etzcl D, Gau (1997b) Cyclic dodecapeptide and process for the preparation thereof. WO 97/20857 (12. 06. 97 )Google Scholar
  102. Mayer A, Kilian M, Roster B, Sterner O. Anke H (1999) In vitro and in vivo ncmaticidal activities of the cyclic dodecapeptide omphalotin A. Pest Sci 55: 27–30Google Scholar
  103. Mazet I, Hung SY, Boucias DG (1994) Detection of toxic metabolites in the hemolymph of Beauveria bassiana infected Spodoptera exigua larvae. Experientia 50: 42–147Google Scholar
  104. Mier N, Canete S, Klaebe A, Chavant L, Fournier D (1996) Insecticidal properties of mushroom and toadstool carpophores. Phytochemistry 41: 1293–1296Google Scholar
  105. Milner RJ, Staples JA (1996) Biological control of termites: results and experiences within a CSIRO project in Australia. Biocont Sci Technol 6: 3–9Google Scholar
  106. Morgan-Jones G, Gams W (1982) Notes on Hyphomycetes. XLI. An endophyte of Festuca arundinacea and the anamorph of Epichloe typhina, new taxa in one of the new Sections of Acremonium. Mycotaxon 15: 311–318Google Scholar
  107. Morino T, Nishimoto M, Masuda A. Fujita S. Nishikiori T. Satto S (1995) NK374200, a novel insecticidal agent from Talaromyces, found by physicochemical screening.) Antibiot 48: 1509–1510Google Scholar
  108. Oh Ii, Swenson DC, Gloer JB, Wicklow DT, Dowd PF (1998) chaetochalasin A: a new bioactive metabolite from Chaetomium brasiliense. Tetrahedron Lett 39: 7633–7636Google Scholar
  109. Okuda T, Nakayama N, Fujiwara A (1982) Calvatic acid production by the Lycoperdaceae 1. Calvatic acid and related compounds produced by Lycoperdon pyriforme. Trans Mycol Soc Jpn 23: 225–234Google Scholar
  110. Omura S, Kuno F, Otoguro K, Sunazuka T, Shiomi K,Masuma R, Iwai I (1995) Arisugacin, a novel and selective inhibitor of acetylcholinesterase from Penicillium sp. FO-4259. J Antibiot 48: 745–746Google Scholar
  111. Ondeyka JG, Helms GL, Hensens OD, Goetz MA, Zink DL, Tsipouras A, Shoop WL, Slayton L, Dombrowski AW, Polishook JD, Ostlind DA, Tsou NN, Ball RG, Singh SB (1997) Nodulisporic acid A, a novel and potent insecticide from a Nodulisporium sp. Isolation, structure determination, and chemical transformations. J Am Chem Soc 119: 8809–8816Google Scholar
  112. Pegler DN, Yao Y-J, Li Y (1994) The Chinese `caterpillar fungus’. Mycologist 8: 3–5Google Scholar
  113. Premachandran D (1990) European patent EP 0363 897 A2. A new nematocidal agent comprises the fungus Myrothecium verrucaria or metabolites therefromGoogle Scholar
  114. Relman AS (1991) Tacrine as a treatment for Alzheimer’s dementia. N Engl J Med 324: 349–352Google Scholar
  115. Roberts DW, Hajek AE (1992) Entomopathogenic fungi as bioinsecticides. In: Leatham GF (ed) Frontiers in industrial mycology. Chapman and Hall, New York, pp 144–159Google Scholar
  116. Rubner A (1996) Revision of predacious hyphomycetes in the Dactylella-Monacrosporium complex. Stud Mycol 39. CBS, BaarnGoogle Scholar
  117. Samson RA, Evans HC, Latgé J-P (1988) Atlas of entomopathogenic fungi. Springer, Berlin Heidelberg New YorkGoogle Scholar
  118. Schreier MH (1997) Mechanism of action of cyclosporin. In: Anke T (cd) Fungal biotechnology. Chapman and Hall, Weinheim, pp 137–146Google Scholar
  119. Shiono Y, Akiyama K, Hayashi H (1999) New okramine congeners, okramines J, K, L, M and related compounds from Penicillium simplicissimum ATCC 90288. Biosci Biotechnol Biochem 63: 1910–1920Google Scholar
  120. Shiono Y, Akiyama K, Hayashi H (2000) Okramines N, O, P, Q and R, new okramine congeners, from Penicillium simplicissimum ATCC 90288. Biosci Biotechnol Biochem 64: 103–110Google Scholar
  121. Siegel MR, Bush LP (1997) Toxin production in grass/endophyte associations. In: Esser K, Lemke PA (eds) The Mycota, vol V, part A. Caroll GC, Tudzynski P (vol eds) Plant relationships. Springer, Berlin Heidelberg New York, pp 185–207Google Scholar
  122. Stadler M, Sterner O (1998) Production of bioactive secondary metabolites in the fruit bodies of macrofungi as a response to injury. Phytochemistry 49: 10131019Google Scholar
  123. Stadler M, Anke H, Sterner O (1993a) Linoleic acid: the nematicidal principle of several nematophagous fungi and its production in trap-forming submerged cultures. Arch Microbiol 160: 401–405Google Scholar
  124. Stadler M, Sterner O, Anke H (1993b) New biologically active compounds from the nematode-trapping fungus Arthrobotrys oligospora Fresenius. Z Naturforschg 48c: 843–850Google Scholar
  125. Stadler M, Anke H, Dekermendjian K, Reiss R, Sterner O, Witt R (1995) New bioactive azaphilones from the fruit bodies and mycelial cultures of the ascomycete Bulgaria inquinans ( Fr. ). Nat Prod Lett 7: 7–14Google Scholar
  126. Sterner O, Bergman R, Kihlberg J, Oluwadiya J, Wickberg B, Vidari G, De Bernardi M, De Marchi F, Fronza G, Vita-Finzi P (1985a) Basidiomycete sesquiterpenes:Google Scholar
  127. the silica gel induced degradation of velutinal derivatives. J Org Chem 50:950–953Google Scholar
  128. Sterner O, Bergman R, Kihlberg J, Wickberg B (1985b) The sesquiterpenes of Lactarius vellereus and their role in a proposed chemical defence system. J Nat Prod 48: 279–288Google Scholar
  129. Sterner O. Etzel W, Mayer A. Anke H (1997) Omphalotin, a new cyclic peptide with potent nematicidal activity from Omphalotus olearius. II. Isolation and structure determination. Nat Prod Lett 10: 33–38Google Scholar
  130. Stirling GR, Smith U (1998) Field tests of formulated products containing either Verticillium chlamydosporium or Arthrobotrys dactyloides for biological control of root-knot nematodes. Biol Contr 11: 231–239Google Scholar
  131. Stirling GR, Smith U, Licastro KA, Eden LM (1998) control of root-knot nematode with formulations of the nematode-trapping fungus Arthrobotrys dactyloides. Biol Contr 11: 224–230Google Scholar
  132. Szallasi A, Bfrô T, Modarres S, Garlaschelli L, Petersen M, Klusch A, Vidari G, Jonassohn M, De Rosa S, Sterner O. Blumberg P, Krause J (1998) Dialdehyde sesquiterpenes and other terpenoids as vanilloids. Eur J Pharmacol 356: 81–89Google Scholar
  133. Takaishi Y, Adachi R, Murakami Y, Ohashi T, Nakano K, Tomimatsu T (1992) A polyoxygenated steroid from Lasiosphaera nipponica. Phytochemistry 31: 243246Google Scholar
  134. Takaishi Y, Murakami Y, Uda M, Ohashi T, Hamamura N, Kiso M, Kadota S (1997) Hydroxyphenylazoformamide derivatives from Calvatia craniformis. Phytochemistry 45: 997–1001Google Scholar
  135. Takemoto T, Nakajima T (1964) Isolation of the insecticidal constituent from Tricholoma muscarium. Yakugaku Zasshi 84: 1183–1186Google Scholar
  136. Takemoto T, Nakajima T, Sakuma P (1964) Isolation of a flyicidal constituent, ibotenic acid from Amanita mus-caria and A. pantherina. Yakugaku Zasshi 84: 12331234Google Scholar
  137. Tang W, Eisenbrand G (1992) Chinese drugs of plant origin. Springer, Berlin Heidelberg New York, pp 373376Google Scholar
  138. Teetor-Barsch GH, Roberts DW (1983) Entomogenous Fusarium species. Mycopathologia 84: 3–16Google Scholar
  139. Tsipouras A, Adefarati AA, Tkacz JS, Frazier EG, Rohrer SP, Birzin E, Rosegay A, Zink DL, Goetz MA, Singh SB, Schaeffer JM (1996) Ophiobolin M and analogues, noncompetitive inhibitors of ivermectin binding with nematocidal activity. Bioorg Med Chem 4: 531536Google Scholar
  140. Turner WB, Aldridge DC (1983) Fungal metabolites I I. Academic Press, LondonGoogle Scholar
  141. van Oorschot (1985) A review of Arthrobotrys and allied genera. In: de Hoog (ed) Taxonomy of the Dactylaria complex, IV—VI. Stud Mycol 26. CBS, Baarn, pp 6196Google Scholar
  142. Vilcinskas A, Matha V, Götz P (1997) Inhibition of phygocytic activity of plasmatocytes isolated from Galleria mellonella by entomogenous fungi and their secondary metabolites. J Insect Physiol 43: 475–483Google Scholar
  143. Weiser J, Matha V (1988a) The insecticidal activity of cyclosporins on mosquito larvae. J Invertebr Pathol 51: 92–93Google Scholar
  144. Weiser J, Matha V(1988b) Tolypin, a new insecticidal metabolite of fungi of the genus Tolypocladium. J Invertebr Pathol 51: 94–96Google Scholar
  145. Wieland T (1996) Toxins and psychoactive compounds from mushrooms. In: Esser K, Lemke PA (eds) TheGoogle Scholar
  146. Mycota, vol VI. Howard DH, Miller JD (vol eds) Human and animal relationships. Springer, Berlin Heidelberg New York, pp 229–248Google Scholar
  147. Zhu JS, Halpern GM, Jones K (1998a) The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis: part I. J Altern Complement Med 4: 289–303Google Scholar
  148. Zhu JS, Halpern GM, Jones K (1998b) The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis: part II. J Altern Complement Med 4: 429–457Google Scholar
  149. Zopf W (1888) Zur Kenntnis der Infections-Krankheiten niederer Tiere und Pflanzen. N Acta Ac Leop 52: 314–376Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • H. Anke
    • 1
  • O. Sterner
    • 2
  1. 1.IBWF e.V.KaiserslauternGermany
  2. 2.Organic Chemistry 2, Chemical CenterUniversity of LundLundSweden

Personalised recommendations